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 

Abstract— Current state-of-the-art for human pose estimation 

is in that it is unsuited for real-time performance without the 

addition of depth information, which can be a major limitation. In 

this paper, we extend the work on Pose Machines using GPU 

acceleration to achieve performance in real time. We also examine 

and propose solutions to the memory and time issues related to the 

training of Pose Machines with large datasets. These include a 

GPU accelerated algorithm for training Pose Machines and 

changing the way data is used, separating training data into 

“structure points” and “evaluation points.” Finally, we examine 

the effect of these changes to the speed of testing and training.  

 
Index Terms—computer vision, inference machines, machine 

learning, pose estimation.   

I. INTRODUCTION 

A. Problem 

The essential problem of human pose estimation from still 

images can be described simply as the identification of the 

locations of a number of joints on a two dimensional image. For 

instance, in our system, we predict the location of the forehead, 

the base of the neck, the left and right shoulders, the left and 

right elbows, the left and right wrists, the left and right hips, the 

left and right knees, and the left and right ankles. An example 

pose can be seen in Figure 1. 

We further specify that we do not have access to depth 

information. The Microsoft Kinect, which is currently the most 

robust real-time human pose estimator, collects a depth image 

using an infrared sensor, as well as an RGB image to do pose 

estimation [1]. While this allows for efficient prediction of 

human poses, it imposes a limitation in hardware. Most 

significantly, it makes pose estimation impossible for outdoor 

scenes where infrared sensing is ineffective. It also requires the 

use of specialized hardware which can limit its potential uses.  

Another challenge of the problem is to do this prediction in 

real time. For example, we might like to take a live video stream 

and overlay part locations so that we can have a real time 2D 

pose for human subjects. This requires that prediction take 

place relatively quickly. The Kinect runs at approximately 30 

frames-per-second, meaning that part prediction takes no more 

than about 33.3 milliseconds. Most current approaches to the 

problem with still images use a graphical model to capture 

relationships between parts. However, many of these 

approaches suffer from either accuracy problems because the 

 

 
 

models are too simple, or suffer from tractability problems 

because the model is too complex [2]. Clearly time complexity 

is an issue because inference on these models takes orders of 

magnitudes longer than what is required for real-time 

performance. 

B. Previous Work 

Until quite recently, most work on pose estimation from 

single images was based on using graphical models to capture 

dependencies between parts for prediction [3, 4, 5, 6, 7, 8], 

typically with simple tree or star-structured models. The 

problem, however, with simplified graphical models is that they 

do not capture a number of important dependencies, such as 

symmetric parts (to avoid double counting) and these methods 

often fail when certain parts are occluded in the image. 

Inference on exact graphical models is too difficult and 

computationally expensive, except for very simple models. 

More recent work has examined using Deep Neural 

Networks to train and refine joint predictors [9]. Its use of 

refining predictions is similar to Pose Machines. 

C. Pose Machines 

Our approach is to extend the work of Ramakrishna et al on 

Pose Machines. Pose Machines are currently the state-of-the-art 

for single-image human pose estimation. This approach 

sidesteps the issue of representation by approaching pose 

estimation as a structured prediction problem. The prediction 
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Fig. 1.  An example generated pose. The colored line segments show the 
connection between the 14 annotated locations. The output pose gives the 

location of joints from which limbs can be inferred. 
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task is given an input image, we would like to predict the 

anatomical landmarks 𝑌 = (𝑌1, … , 𝑌𝑃) for each of the P parts, 

in this case P=14 [2]. We predict each part such that 𝑌𝑝 ∈ 𝑍 ⊂

 ℝ2, where 𝑍 is the set of all pixel locations (𝑢, 𝑣) in the image. 

The inference machine then consists of a sequence of multi-

class classifiers, 𝑔𝑡(. ), which are trained to predict the location 

of each part. In each stage 𝑡 ∈ {1, … , 𝑇}, we predict a 

confidence for each output assignment 𝑌𝑃 = 𝑧, ∀𝑧 ∈ 𝑍 based on 

the input image data 𝑥𝑧 ∈ ℝ𝑑 and contextual information from 

the previous stage, 𝜓(𝑧, 𝑏𝑡−1
𝑖 ), where 𝑏𝑡

𝑝
 represents the 

confidence at stage t that 𝑌𝑝 = 𝑧, ∀𝑧 ∈ 𝑍. We can then compute 

the confidence that a particular part 𝑝 belongs at location 𝑧 by 

𝑏𝑡(𝑌𝑝 = 𝑧) = 𝑔𝑡
𝑝

(𝑥𝑧; ⋃ 𝜓(𝑧, 𝑏𝑡−1
𝑖 )𝑃

𝑖=1 ), where the union 

operator is the concatenation of the outputs of  𝜓(. ) for each 

part.  

The intuition behind this framework is that passing 

information between predictors for each stage allows for 

information about the location of different parts to be used in 

the next stage to predict other parts. For instance, a high 

likelihood of the head in one location might make it far more 

likely that the neck is at a location near it. This framework, we 

believe, implicitly captures the statistical relationship between 

these parts. 

 The predictors themselves are implemented as gradient 

boosted random forests classifiers. The basis of this algorithm 

is the random forest [10]. Given an input 𝑥 ∈ ℝ𝑑, the algorithm 

returns the corresponding continuous output 𝑦 ∈ ℝ𝑃. This 

output is determined in the following way. For each tree in the 

forest, the algorithm determines the leaf node that corresponds 

to a particular 𝑥𝑖 . Each internal node keeps track of a dimension 

of 𝑥 𝑑𝑖𝑚 and a threshold 𝑡ℎ𝑟𝑒𝑠ℎ. The value of 𝑥𝑖 is compared 

to the threshold at that dimension to determine if the 

corresponding leaf node is a left or right descendant of the 

current node – if 𝑥𝑖[𝑑𝑖𝑚] ≤ 𝑡ℎ𝑟𝑒𝑠ℎ, it updates the current node 

to be the left child. Otherwise, it updates it to be the right child. 

Once it has reached a leaf node of the tree 𝑡𝑟, it outputs the 

distribution of 𝑦 that is stored there 𝑃𝑡𝑟(𝑥𝑖). This distribution 

corresponds to the distribution of training examples that also 

navigated to this node during training. Once this is done for all 

trees, the final output y is simply the average of all of 

the 𝑃𝑡𝑟(𝑥𝑖)’s. 

 

D. Fundamental Time, Energy Tradeoff 

One of the fundamental trade-offs in many problems is 

between speed and accuracy. As one might expect, methods of 

pose estimation that are more accurate often take longer to 

compute. This is no different for Pose Machines. Below is a 

chart showing the major parameters of the Pose Machine 

Algorithm, how the value of that parameter effects the runtime 

of the algorithm and the value used subsequently to compare 

running times for this paper. Increasing each of these 

parameters will improve the accuracy of the pose estimator to 

some extent, but causes the prediction to take longer [2]. 

 

II. APPROACH 

A. CUDA Accelerated Run Time Performance 

Before work was started, running Pose Machines for a 

complete image took approximately 270 milliseconds using the 

parameters from Table I. This would mean that you could run 

at approximately 4 frames-per-second on a top-of-the-line 

consumer processor. Perhaps additional improvements in 

processors could bring this up to a reasonable frame-rate, but 

for now it is simply too slow to allow for real time applications. 

 A major focus of this work, then, is to increase the speed of 

this prediction without sacrificing accuracy. To that end, Pose 

Machines was accelerated using GPU acceleration. 

 The original work on GPU accelerated algorithms for 

random forests was performed by Toby Sharp at Microsoft 

Research. The basic concept of the algorithm was to take 

advantage of the parallel capacity available with graphics 

processors and compute the output of all of the inputs 𝑥𝑖 , at the 

same time. Thus instead of computing the output  𝑦𝑖 = 𝑓(𝑥𝑖) ∀𝑖 
serially, they are computed in parallel. This is particularly 

useful with respect to pose machines because we are essentially 

TABLE I 
TUNABLE PARAMETERS 

Parameter Time Relationship Value in System 

Stages Linear 3 

Levels of Hierarchy Linear  3 

Depth Sublinear 12 
Number of Trees Linear 20 

Boosting Iterations Linear 25 

Image Resolution Quadratic 360p 

 

 
Fig. 2.  Pose Machine from Ramakrishna et al. For each image location, the figure shows the layers of prediction from Level 1 to Level L and the multiple stages 

of prediction from 1 to T. Photo courtesy of Ramakrishna. 
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computing this value for 𝑍, the set of all pixel locations (𝑢, 𝑣) 

in the image. Sharp’s algorithm stores each tree as a matrix 

where each row of the matrix is a node in the tree. A modified 

version of this matrix is shown in Figure 3.  

As before, each internal node stores a dimension and a 

threshold. Instead of doing a conditional branch to determine 

the successor node, the modified Sharp algorithm calculates the 

same comparison 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ [11]. Now if the condition 

was true, the value in memory is 1, otherwise the value is 0. The 

algorithm then loads the index of the next node by 

calculating 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 = 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑 + 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ. The 

way the tree is laid out, the left and right children of a node are 

always next to each other. The significance of doing the 

calculation this way is that no branching is ever performed. This 

means that all of these calculations can be done simultaneously 

for  ∀𝑖 without forcing the GPU to spin some of its threads, 

which is what would happen with a 𝑖𝑓, 𝑒𝑙𝑠𝑒 construct. Once all 

of the 𝑥𝑖’s reach leaf nodes, the average outputs for all of the 

trees are averaged. Additionally, since we are in fact running 

boosted random forests, this is repeated for each boosting 

iteration and the final output is determined by the normal 

weighted sum of the outputs for each stage.  

One additional change that was made from the Sharp 

Algorithm (besides the generalization of the conditions) is that 

the operation is further parallelized over trees (see Figure 4). In 

addition, while Sharp stores the node information (left child, 

leaf, dimension, thresh) in the same data structure as the average 

outputs, our modification puts them in separate data structures. 

These changes allow for more efficient GPU memory use and 

more efficient use of available threads. 

In addition to the random forest prediction being performed 

on GPU, most of the operations of Pose Machines was moved 

onto GPU. The most significant calculation moved to GPU was 

the calculation of the context features, earlier 

simplified 𝜓(𝑧, 𝑏𝑡−1
𝑖 ). Additional details of context features can 

be found in [11], but the basic idea is that the outputs from the 

previous stage for all of the parts are condensed into score maps 

and fed as input into the next prediction stage. In this case, each 

of these context features for each input 𝑥𝑖 is completely 

independent, so this was fairly easily parallelized.  

The boosted adding of the random forests was moved onto 

GPU. With all of the major calculations now done on GPU, 

memory copies between CPU and GPU (one of the most 

computationally expensive operations) were minimized.  

B. GPU-Accelerated Training 

Runtime performance is an important part of real time human 

pose estimators, but the other half of the problem, besides the 

runtime performance, is the training performance. Currently, 

for a dataset size of one thousand, it takes about 1 day. 

Unfortunately, to achieve performance close to Kinect 

accuracy, the algorithm likely needs to train more on the order 

of 10 million images. Assuming an approximately linear 

runtime for training (this is likely optimistic). It would take 

approximately 10,000 days or about 27 years to train a model 

with 10 million images. Clearly this is intractable.  

One approach to fixing this problem is to parallelize using 

GPU acceleration. For this, first we look at the basic algorithm 

for training a random forest (the backbone of the prediction, and 

the part that takes up most of the training time). The recursive 

algorithm for building a tree, along with the runtime with 

respect to the number of examples, of different operations is 

shown in Figure 6.  

For parallelization, clearly the most important things to 

parallelize are the sorting of X, and the determination of the best 

gain on line 7. There are numerous parallel algorithms for sort, 

so we will concentrate on the determination of gain. 

The determination of the gain basically boils down to the 

simple operation of determining running sums. The formula we 

use to calculate the gain for a regression tree is 𝑒𝑟𝑟𝑝𝑎𝑟𝑒𝑛𝑡 −

(𝑒𝑟𝑟𝑙𝑒𝑓𝑡 + 𝑒𝑟𝑟𝑟𝑖𝑔ℎ𝑡). To calculate a particular error of a 

particular input dimension and split, the formula is 𝑒𝑟𝑟 =

 ∑ (∑ 𝑤𝑖𝑦𝑖𝑗
2𝑁

𝑖=1 ) −
(∑ 𝑤𝑖𝑦𝑖𝑗

𝑁
𝑖=1 )

2

∑ 𝑤_𝑖𝑁
𝑖=1

𝐷
𝑗=1 , where N is the number of 

samples and D is the dimensionality of the output. From this, 

you can see the bulk of the work is computing these sums. Thus, 

 
Fig. 4.  GPU-optimized data structure for random forests. Sharp Trees are concatenated on top of each other to allow for additional parallel operations. Operations 

on the data structure are parallel over examples, as well as over trees. 

  

 
Fig. 5 Context Features Visualization. The output values for the locations 
surrounding each point are concatenated into a new input feature for the next 

stage of computation. Photo courtesy of Ramakrishna. 
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we developed the following algorithm for computing the 

running sum in parallel shown in Figure 7 and Figure 8. 

The running time of this algorithm is 𝜃(
𝑁

𝑘
𝑙𝑜𝑔𝑁), where k is 

the number of parallel processes available. The only serial work 

is related to the log of the size of the input. The adding 

operations occur in parallel, but because hardware has a fixed 

limit to the number of parallel operations, the actual time 

depends on that hardware constant 𝑘. 

III. RESULTS 

Figure 9 shows the runtime performance of Pose Machines 

using the parameters from Figure 3 using naïve CPU 

parallelization and the GPU acceleration version. 

These results show a great improvement in runtime from 

about 4 frames per second to about 17, and approximately 400% 

increase. In particular, the context feature calculation is greatly 

speeded by GPU acceleration, however, the prediction is still 

greatly sped up. The only operation not implemented on GPU 

was the Histogram of Gradients (HOG) feature computation. 

Clearly speeding up this computation could have a positive 

effect on runtime performance. 

Figure 10 shows the speed results for the GPU accelerated 

running sum algorithm. For sufficiently large inputs, the GPU 

accelerated algorithm runs about 3 times the speed. While this 

result is certainly promising, GPU acceleration of training may 

not be the ideal solution. First, there is a memory issue in that 

even high-end GPU processors have only about 10 GB of 

memory which may prevent GPU from being used for training. 

In addition, given that GPU memory is filled, only one CPU 

process can be used at a time during training which prevents 

CPU acceleration of training. This means that unless the GPU 

 
 

Fig. 6 Algorithm for growing a decision tree. Notice the bulk of the time is spent in the for loop starting on line 4. The running time of this part is 𝜃(𝑁𝑙𝑜𝑔𝑁).  

 
 

Fig. 7 New Algorithm to compute running sums in parallel.  

 
Fig. 8 Visualization of running sum algorithm in Figure 7. 
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accelerated training is far faster than a single-core CPU 

algorithm, GPU accelerated training is unlikely to help. 

IV. CONCLUSION 

The most impressive result of the work is the time 

performance. Based on the number reported, running Pose 

Machines using GPU acceleration achieves performance close 

to that of the Kinect with respect to speed. It is currently the 

fastest implementation of a working pose estimator that does 

not use depth information. DeepPose [9] claims a running time 

of 100 milliseconds, compared to our 60 milliseconds. 

The accuracy of the model is still the biggest problem. Pose 

Machines still do not match the prediction accuracy of the 

Kinect. One of the major problems right now is the limited 

training sets that the algorithm is trained on. Improvements in 

performance from GPU accelerated training and other 

improvements in training time such as the structure and 

evaluation point schema will be important to train the algorithm 

on extremely large datasets. 

V. FUTURE WORK 

Most of the future work on this project will concentrate on 

training larger datasets. This will involve solving problems 

surrounding training speed as well as problems with memory. 

Currently, the entire training dataset is put into memory for 

training, but as the dataset gets larger, this will become 

intractable.  

Additional work is currently being done to train by using 

some input examples as “structure points” and used to 

determine splits and using the rest to determine the distribution 

on leaf nodes. Ideally this would reduce the runtime by reducing 

the number of “splits” that internal nodes have to consider 

during training. This work is ongoing, so no results have been 

generated, but the preliminary findings make this a promising 

area. 

A possibility beyond directly solving the training time and 

space issues is to better use available training examples. The 

idea is to essentially learn which images will best improve the 

performance of the algorithm. The algorithm will train on one 

subset of the data and then predict the output for the other subset 

of the data. The images that the algorithm did poorly on will 

then be used in the next round of training so that it can better 

learn the things it missed. 
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Fig. 9 Bar graph showing runtime performance of Pose Machines. All 

parameters are listed in Table I. 
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Fig. 10 Line graph showing performance of new running sum algorithm 

compared to simply calculating a running sum on CPU. 
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