
 1

Abstract— Current state-of-the-art for human pose estimation

is in that it is unsuited for real-time performance without the

addition of depth information, which can be a major limitation. In

this paper, we extend the work on Pose Machines using GPU

acceleration to achieve performance in real time. We also examine

and propose solutions to the memory and time issues related to the

training of Pose Machines with large datasets. These include a

GPU accelerated algorithm for training Pose Machines and

changing the way data is used, separating training data into

“structure points” and “evaluation points.” Finally, we examine

the effect of these changes to the speed of testing and training.

Index Terms—computer vision, inference machines, machine

learning, pose estimation.

I. INTRODUCTION

A. Problem

The essential problem of human pose estimation from still

images can be described simply as the identification of the

locations of a number of joints on a two dimensional image. For

instance, in our system, we predict the location of the forehead,

the base of the neck, the left and right shoulders, the left and

right elbows, the left and right wrists, the left and right hips, the

left and right knees, and the left and right ankles. An example

pose can be seen in Figure 1.

We further specify that we do not have access to depth

information. The Microsoft Kinect, which is currently the most

robust real-time human pose estimator, collects a depth image

using an infrared sensor, as well as an RGB image to do pose

estimation [1]. While this allows for efficient prediction of

human poses, it imposes a limitation in hardware. Most

significantly, it makes pose estimation impossible for outdoor

scenes where infrared sensing is ineffective. It also requires the

use of specialized hardware which can limit its potential uses.

Another challenge of the problem is to do this prediction in

real time. For example, we might like to take a live video stream

and overlay part locations so that we can have a real time 2D

pose for human subjects. This requires that prediction take

place relatively quickly. The Kinect runs at approximately 30

frames-per-second, meaning that part prediction takes no more

than about 33.3 milliseconds. Most current approaches to the

problem with still images use a graphical model to capture

relationships between parts. However, many of these

approaches suffer from either accuracy problems because the

models are too simple, or suffer from tractability problems

because the model is too complex [2]. Clearly time complexity

is an issue because inference on these models takes orders of

magnitudes longer than what is required for real-time

performance.

B. Previous Work

Until quite recently, most work on pose estimation from

single images was based on using graphical models to capture

dependencies between parts for prediction [3, 4, 5, 6, 7, 8],

typically with simple tree or star-structured models. The

problem, however, with simplified graphical models is that they

do not capture a number of important dependencies, such as

symmetric parts (to avoid double counting) and these methods

often fail when certain parts are occluded in the image.

Inference on exact graphical models is too difficult and

computationally expensive, except for very simple models.

More recent work has examined using Deep Neural

Networks to train and refine joint predictors [9]. Its use of

refining predictions is similar to Pose Machines.

C. Pose Machines

Our approach is to extend the work of Ramakrishna et al on

Pose Machines. Pose Machines are currently the state-of-the-art

for single-image human pose estimation. This approach

sidesteps the issue of representation by approaching pose

estimation as a structured prediction problem. The prediction

Real Time Human Pose Estimation for Boosted

Random Forests and Pose Machines

Kenneth Marino, Georgia Institute of Technology

Fig. 1. An example generated pose. The colored line segments show the
connection between the 14 annotated locations. The output pose gives the

location of joints from which limbs can be inferred.

 2

task is given an input image, we would like to predict the

anatomical landmarks 𝑌 = (𝑌1, … , 𝑌𝑃) for each of the P parts,

in this case P=14 [2]. We predict each part such that 𝑌𝑝 ∈ 𝑍 ⊂

 ℝ2, where 𝑍 is the set of all pixel locations (𝑢, 𝑣) in the image.

The inference machine then consists of a sequence of multi-

class classifiers, 𝑔𝑡(.), which are trained to predict the location

of each part. In each stage 𝑡 ∈ {1, … , 𝑇}, we predict a

confidence for each output assignment 𝑌𝑃 = 𝑧, ∀𝑧 ∈ 𝑍 based on

the input image data 𝑥𝑧 ∈ ℝ𝑑 and contextual information from

the previous stage, 𝜓(𝑧, 𝑏𝑡−1
𝑖), where 𝑏𝑡

𝑝
 represents the

confidence at stage t that 𝑌𝑝 = 𝑧, ∀𝑧 ∈ 𝑍. We can then compute

the confidence that a particular part 𝑝 belongs at location 𝑧 by

𝑏𝑡(𝑌𝑝 = 𝑧) = 𝑔𝑡
𝑝

(𝑥𝑧; ⋃ 𝜓(𝑧, 𝑏𝑡−1
𝑖)𝑃

𝑖=1), where the union

operator is the concatenation of the outputs of 𝜓(.) for each

part.

The intuition behind this framework is that passing

information between predictors for each stage allows for

information about the location of different parts to be used in

the next stage to predict other parts. For instance, a high

likelihood of the head in one location might make it far more

likely that the neck is at a location near it. This framework, we

believe, implicitly captures the statistical relationship between

these parts.

 The predictors themselves are implemented as gradient

boosted random forests classifiers. The basis of this algorithm

is the random forest [10]. Given an input 𝑥 ∈ ℝ𝑑, the algorithm

returns the corresponding continuous output 𝑦 ∈ ℝ𝑃. This

output is determined in the following way. For each tree in the

forest, the algorithm determines the leaf node that corresponds

to a particular 𝑥𝑖 . Each internal node keeps track of a dimension

of 𝑥 𝑑𝑖𝑚 and a threshold 𝑡ℎ𝑟𝑒𝑠ℎ. The value of 𝑥𝑖 is compared

to the threshold at that dimension to determine if the

corresponding leaf node is a left or right descendant of the

current node – if 𝑥𝑖[𝑑𝑖𝑚] ≤ 𝑡ℎ𝑟𝑒𝑠ℎ, it updates the current node

to be the left child. Otherwise, it updates it to be the right child.

Once it has reached a leaf node of the tree 𝑡𝑟, it outputs the

distribution of 𝑦 that is stored there 𝑃𝑡𝑟(𝑥𝑖). This distribution

corresponds to the distribution of training examples that also

navigated to this node during training. Once this is done for all

trees, the final output y is simply the average of all of

the 𝑃𝑡𝑟(𝑥𝑖)’s.

D. Fundamental Time, Energy Tradeoff

One of the fundamental trade-offs in many problems is

between speed and accuracy. As one might expect, methods of

pose estimation that are more accurate often take longer to

compute. This is no different for Pose Machines. Below is a

chart showing the major parameters of the Pose Machine

Algorithm, how the value of that parameter effects the runtime

of the algorithm and the value used subsequently to compare

running times for this paper. Increasing each of these

parameters will improve the accuracy of the pose estimator to

some extent, but causes the prediction to take longer [2].

II. APPROACH

A. CUDA Accelerated Run Time Performance

Before work was started, running Pose Machines for a

complete image took approximately 270 milliseconds using the

parameters from Table I. This would mean that you could run

at approximately 4 frames-per-second on a top-of-the-line

consumer processor. Perhaps additional improvements in

processors could bring this up to a reasonable frame-rate, but

for now it is simply too slow to allow for real time applications.

 A major focus of this work, then, is to increase the speed of

this prediction without sacrificing accuracy. To that end, Pose

Machines was accelerated using GPU acceleration.

 The original work on GPU accelerated algorithms for

random forests was performed by Toby Sharp at Microsoft

Research. The basic concept of the algorithm was to take

advantage of the parallel capacity available with graphics

processors and compute the output of all of the inputs 𝑥𝑖 , at the

same time. Thus instead of computing the output 𝑦𝑖 = 𝑓(𝑥𝑖) ∀𝑖
serially, they are computed in parallel. This is particularly

useful with respect to pose machines because we are essentially

TABLE I
TUNABLE PARAMETERS

Parameter Time Relationship Value in System

Stages Linear 3

Levels of Hierarchy Linear 3

Depth Sublinear 12
Number of Trees Linear 20

Boosting Iterations Linear 25

Image Resolution Quadratic 360p

Fig. 2. Pose Machine from Ramakrishna et al. For each image location, the figure shows the layers of prediction from Level 1 to Level L and the multiple stages

of prediction from 1 to T. Photo courtesy of Ramakrishna.

 3

computing this value for 𝑍, the set of all pixel locations (𝑢, 𝑣)

in the image. Sharp’s algorithm stores each tree as a matrix

where each row of the matrix is a node in the tree. A modified

version of this matrix is shown in Figure 3.

As before, each internal node stores a dimension and a

threshold. Instead of doing a conditional branch to determine

the successor node, the modified Sharp algorithm calculates the

same comparison 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ [11]. Now if the condition

was true, the value in memory is 1, otherwise the value is 0. The

algorithm then loads the index of the next node by

calculating 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 = 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑 + 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ. The

way the tree is laid out, the left and right children of a node are

always next to each other. The significance of doing the

calculation this way is that no branching is ever performed. This

means that all of these calculations can be done simultaneously

for ∀𝑖 without forcing the GPU to spin some of its threads,

which is what would happen with a 𝑖𝑓, 𝑒𝑙𝑠𝑒 construct. Once all

of the 𝑥𝑖’s reach leaf nodes, the average outputs for all of the

trees are averaged. Additionally, since we are in fact running

boosted random forests, this is repeated for each boosting

iteration and the final output is determined by the normal

weighted sum of the outputs for each stage.

One additional change that was made from the Sharp

Algorithm (besides the generalization of the conditions) is that

the operation is further parallelized over trees (see Figure 4). In

addition, while Sharp stores the node information (left child,

leaf, dimension, thresh) in the same data structure as the average

outputs, our modification puts them in separate data structures.

These changes allow for more efficient GPU memory use and

more efficient use of available threads.

In addition to the random forest prediction being performed

on GPU, most of the operations of Pose Machines was moved

onto GPU. The most significant calculation moved to GPU was

the calculation of the context features, earlier

simplified 𝜓(𝑧, 𝑏𝑡−1
𝑖). Additional details of context features can

be found in [11], but the basic idea is that the outputs from the

previous stage for all of the parts are condensed into score maps

and fed as input into the next prediction stage. In this case, each

of these context features for each input 𝑥𝑖 is completely

independent, so this was fairly easily parallelized.

The boosted adding of the random forests was moved onto

GPU. With all of the major calculations now done on GPU,

memory copies between CPU and GPU (one of the most

computationally expensive operations) were minimized.

B. GPU-Accelerated Training

Runtime performance is an important part of real time human

pose estimators, but the other half of the problem, besides the

runtime performance, is the training performance. Currently,

for a dataset size of one thousand, it takes about 1 day.

Unfortunately, to achieve performance close to Kinect

accuracy, the algorithm likely needs to train more on the order

of 10 million images. Assuming an approximately linear

runtime for training (this is likely optimistic). It would take

approximately 10,000 days or about 27 years to train a model

with 10 million images. Clearly this is intractable.

One approach to fixing this problem is to parallelize using

GPU acceleration. For this, first we look at the basic algorithm

for training a random forest (the backbone of the prediction, and

the part that takes up most of the training time). The recursive

algorithm for building a tree, along with the runtime with

respect to the number of examples, of different operations is

shown in Figure 6.

For parallelization, clearly the most important things to

parallelize are the sorting of X, and the determination of the best

gain on line 7. There are numerous parallel algorithms for sort,

so we will concentrate on the determination of gain.

The determination of the gain basically boils down to the

simple operation of determining running sums. The formula we

use to calculate the gain for a regression tree is 𝑒𝑟𝑟𝑝𝑎𝑟𝑒𝑛𝑡 −

(𝑒𝑟𝑟𝑙𝑒𝑓𝑡 + 𝑒𝑟𝑟𝑟𝑖𝑔ℎ𝑡). To calculate a particular error of a

particular input dimension and split, the formula is 𝑒𝑟𝑟 =

 ∑ (∑ 𝑤𝑖𝑦𝑖𝑗
2𝑁

𝑖=1) −
(∑ 𝑤𝑖𝑦𝑖𝑗

𝑁
𝑖=1)

2

∑ 𝑤_𝑖𝑁
𝑖=1

𝐷
𝑗=1 , where N is the number of

samples and D is the dimensionality of the output. From this,

you can see the bulk of the work is computing these sums. Thus,

Fig. 4. GPU-optimized data structure for random forests. Sharp Trees are concatenated on top of each other to allow for additional parallel operations. Operations

on the data structure are parallel over examples, as well as over trees.

Fig. 5 Context Features Visualization. The output values for the locations
surrounding each point are concatenated into a new input feature for the next

stage of computation. Photo courtesy of Ramakrishna.

 4

we developed the following algorithm for computing the

running sum in parallel shown in Figure 7 and Figure 8.

The running time of this algorithm is 𝜃(
𝑁

𝑘
𝑙𝑜𝑔𝑁), where k is

the number of parallel processes available. The only serial work

is related to the log of the size of the input. The adding

operations occur in parallel, but because hardware has a fixed

limit to the number of parallel operations, the actual time

depends on that hardware constant 𝑘.

III. RESULTS

Figure 9 shows the runtime performance of Pose Machines

using the parameters from Figure 3 using naïve CPU

parallelization and the GPU acceleration version.

These results show a great improvement in runtime from

about 4 frames per second to about 17, and approximately 400%

increase. In particular, the context feature calculation is greatly

speeded by GPU acceleration, however, the prediction is still

greatly sped up. The only operation not implemented on GPU

was the Histogram of Gradients (HOG) feature computation.

Clearly speeding up this computation could have a positive

effect on runtime performance.

Figure 10 shows the speed results for the GPU accelerated

running sum algorithm. For sufficiently large inputs, the GPU

accelerated algorithm runs about 3 times the speed. While this

result is certainly promising, GPU acceleration of training may

not be the ideal solution. First, there is a memory issue in that

even high-end GPU processors have only about 10 GB of

memory which may prevent GPU from being used for training.

In addition, given that GPU memory is filled, only one CPU

process can be used at a time during training which prevents

CPU acceleration of training. This means that unless the GPU

Fig. 6 Algorithm for growing a decision tree. Notice the bulk of the time is spent in the for loop starting on line 4. The running time of this part is 𝜃(𝑁𝑙𝑜𝑔𝑁).

Fig. 7 New Algorithm to compute running sums in parallel.

Fig. 8 Visualization of running sum algorithm in Figure 7.

 5

accelerated training is far faster than a single-core CPU

algorithm, GPU accelerated training is unlikely to help.

IV. CONCLUSION

The most impressive result of the work is the time

performance. Based on the number reported, running Pose

Machines using GPU acceleration achieves performance close

to that of the Kinect with respect to speed. It is currently the

fastest implementation of a working pose estimator that does

not use depth information. DeepPose [9] claims a running time

of 100 milliseconds, compared to our 60 milliseconds.

The accuracy of the model is still the biggest problem. Pose

Machines still do not match the prediction accuracy of the

Kinect. One of the major problems right now is the limited

training sets that the algorithm is trained on. Improvements in

performance from GPU accelerated training and other

improvements in training time such as the structure and

evaluation point schema will be important to train the algorithm

on extremely large datasets.

V. FUTURE WORK

Most of the future work on this project will concentrate on

training larger datasets. This will involve solving problems

surrounding training speed as well as problems with memory.

Currently, the entire training dataset is put into memory for

training, but as the dataset gets larger, this will become

intractable.

Additional work is currently being done to train by using

some input examples as “structure points” and used to

determine splits and using the rest to determine the distribution

on leaf nodes. Ideally this would reduce the runtime by reducing

the number of “splits” that internal nodes have to consider

during training. This work is ongoing, so no results have been

generated, but the preliminary findings make this a promising

area.

A possibility beyond directly solving the training time and

space issues is to better use available training examples. The

idea is to essentially learn which images will best improve the

performance of the algorithm. The algorithm will train on one

subset of the data and then predict the output for the other subset

of the data. The images that the algorithm did poorly on will

then be used in the next round of training so that it can better

learn the things it missed.

REFERENCES

[1] J. Shotton et al, “Efficient Human Pose Estimation from Single Depth

Images,” CVPR, 2011.

[2] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and Y. Sheikh,
"Pose Machines: Articulated Pose Estimation via Inference Machines,"

ECCV, 2014.

[3] P. F. Felzenszwalb, D.P. Huttenlocher, “Pictorial structures for object
recognition,” IJCV, 2005.

[4] D. Ramanan, D.A. Forsyth, A. Zisserman, “Strike a Pose: Tracking people

by finding stylized poses,” CVPR, 2005.
[5] M. Andriluka, S. Roth, B Schiele, “Monocular 3D Pose Estimation and

Tracking by Detection,” CVPR, 2010.

[6] M. Andriluka, S. Roth, B Schiele, “Pictoral Structures Revisited: People
Detection and Articulated Pose Estimation,” CVPR, 2009.

[7] Y. Yang, D. Ramanan, “Articulated pose estimation with flexible

mixture-of-parts,” CVPR, 2011.
[8] S. Johnson, M. Everingham, “Clustered pose and nonlinear appearance

models for human pose estimation.” BMVC, 2010.

[9] A. Toshev, C. Szegedy, “DeepPose: Human Pose Estimation via Deep
Neural Networks,” CVPR, 2014.

[10] L. Breiman, “Random Forests,” Machine Learning, 2001.

[11] T. Sharp, “Implementing Decision Forests on a GPU,” ECCV 2008.

Fig. 9 Bar graph showing runtime performance of Pose Machines. All

parameters are listed in Table I.

0

50

100

150

200

250

300

HOG
Features

Prediction Context
Features

Other Total

Ti
m

e
(m

s)
Runtime Performance

CPU CUDA

Fig. 10 Line graph showing performance of new running sum algorithm

compared to simply calculating a running sum on CPU.

0

100

200

300

0 20,000,00040,000,00060,000,00080,000,000

Ti
m

e
(m

s)

Input Size

GPU Running Sum Algorithm -
Time Comparison

CPU Parallel Alg

