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My interest in robotics really begins with the media coverage of the DARPA driverless car Grand 

Challenge. Tasked with developing a completely autonomous car to navigate 240 km in the Mojave 

Desert in 2004, the most successful vehicle, Carnegie Mellon’s Sandstorm, managed to travel 12 km 

before being caught on an embankment. Just one year later, five teams completed a similar course and 

just three years later six teams completed the DARPA “Urban Challenge,” following traffic laws and 

avoiding other vehicles. It was the coverage of these events, while I was in middle school and high 

school, that got me seriously interested in robotics and artificial intelligence. 

A little over a year ago, I started working with Professor Charles Isbell in the Lab for Interactive 

Artificial Intelligence on machine learning approaches to artificial intelligence. In particular I began 

working on state space representation, developing high-level features for the game of Go with deep 

networks, and on reinforcement learning.  

Reinforcement learning is essentially a set of algorithms and methods to solve Markov Decision 

Processes (MDPs). In an MDP, the environment is modeled by a set of states S (such as coordinates on a 

2D surface) and a set of possible actions A in those states [1]. There are also rewards R(s) that the agent 

(a robot for instance) receives for arriving in certain states. The goal of reinforcement learning is to 

determine a policy π, an action for every state a = π(s), to maximize the rewards received by the agent [3]. 

Two commonly used methods for this are value iteration, which attempts to either learn the true value of a 

state V(s) or of state action pairs Q(s,a), and policy iteration which learns the value of a state Vπ(s) under 

policy π and then updates the policy by choosing the action in each state that maximizes the expected 

value of the next state under the policy Vπ(s′) [2]. 

The formulation of MDPs lends itself particularly well to robotics problems.  The set of states S 

is usually a continuous space (depending on the problem) and the action space A can be either a vector 

representing the robot’s path or the control signals that determine the robot’s motion. Reinforcement 

learning allows robots to learn optimal behavior through trail-and-error without explicitly detailing the 

solution to a particular problem [3]. The applications for RL in range from control to path-planning.  

The usefulness of reinforcement learning for robotics comes with its own set of challenges. The 

first is that almost all domains of interest are continuous. In robot path-planning for example, you have 

might want to find the fastest path to a particular area on a 2D map with obstacles and hindrances. The 

robot can be anywhere within the map, not just at discrete x and y locations. The actions are also 

continuous: either a control signal for the robot’s actuators or motion if we are using the assumption that 

the robot is a point particle. Control problems also usually involve continuous control and input signals.  

One common way of avoiding the continuous problem is to discretize the state and action spaces–

that is divide the space into a grid and call each grid a discrete state [1]. There are merits and drawbacks 

to this approach, but the biggest problem is that it leaves you with a potentially large number of states, 

which can be impractical. An alternative method is to use a function approximation method to learn the 

MDP. Rather than learn an exact value function V(s) or Q(s,a) for each state or each state-action pair, you 

approximate these functions.  

One particularly efficient such approximation is the linear approximation architecture. This model 

maps states or state-action pairs to a low-dimensional feature vector using basis functions φ(s) and uses a 

feature vector ω to map this to the value function: V(s) = ω ∗ φ(s) [2]. Linear Architectures are 

particularly good for RL because they guarantee convergence and performance under certain conditions. 

Another advantage of linear architectures is that they learn efficiently from a limited number of 

experiences. This is particularly helpful for robotics applications as it is often more difficult to collect real 

data [3]. 
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A current topic in linear architectures is the choice of basis functions. Most architectures use a 

class of functions called Radial Basis Functions (RBFs). The key detail of RBFs is that the value of the 

RBF function depends only on the distance of the input from the center c. RBFs are parameterized by the 

center c and the width W which roughly corresponds to the size of the function or how close a value has 

to be to the center to activate the RBF. The most common procedure is to choose a large number of RBFs 

and place them evenly over the state space. While this often works in simpler domains, for many domains 

it is not sufficient. There may be obstacles that divide the placed RBFs, causing large changes to the value 

function in a small space.  

My research is focused on developing the best basis functions to describe a state space. Menache, 

Mannor, Shimkin (2005) [2] showed that using cross entropy (CE), the initial  RBF basis functions can be 

optimized to provide the most accurate value function V(s) for a fixed policy. After reproducing their 

results, I determined that the natural course of action was to optimize the RBFs to determine the most 

accurate Q(s,a) function using an algorithm called Least Squares Policy Iteration (LSPI) [4]. This would 

allow one to determine the optimal policy in a domain: the goal of reinforcement learning.   

The problems in using reinforcement learning for robotics problems make my approach 

potentially very helpful. I have shown in my experiments so far that the method works for smaller discrete 

domains, so the next step is to use the approach to solve a path-planning problem in robotics. The set of 

states S and A are both continuous, and the robot has to learn the best action a in any arbitrary state s. 

Because the RBFs are already able to take in continuous values, this approach is already suited to robotic 

path planning. Rather than having to discretize the state space, this function approximation allows you to 

extend the algorithm into continuous state and action spaces [1]. The basis function adaptation also allows 

for a more compact state representation, thus lessening the problems of dimensionality and sampling. 

Sebastian Thrun, who worked on the Stanford robotic car for the 2005 and 2007 Grand 

Challenges as well as the Google Driverless Car, describes his motivation working in robotics in very 

personal terms. When he was 18, his best friend died in a car accident. I share his hope and optimism that 

research being done now in robotics and artificial intelligence bring about a better world. Over 20,000 

Americans die in car crashes each year. Autonomous driving has the potential to prevent car accidents.  

The development of computers and the Internet has been the last great technological revolution. I 

believe that robotics could be the next great revolution. Intelligent automatization could revolutionize 

every industry, dropping prices for consumers and raising the standard of living everywhere. Intelligent 

robotics for healthcare and for the care of the elderly could be a possible solution to the problems of an 

aging society and could replace humans on dangerous search and rescue missions. I believe that the 

development of more intelligent machines will be the next great boon for mankind. 
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