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INTRODUCTION AND SUMMARY

Dr, R. E. Kalman introduced his concept of opti-
mum estimation in 1960. Since that time, his tech-
nique has proved to be a powerful and practical
tool. The approach is particularly well suited for
optimizing the performance of modern terrestria]
and space navigation systems.

Many people not directly involved in systems
analysis have heard about Kalman- filtering and
have expressed an interest in learning more about
it. Although attempts have been made to supply
such people with simple, intuitive explanations of
Kalman fltering, it is this writer's opinion that

‘none of these explanations has been completely suc-

cessful, Almost without exception, they have tended
to become enmeshed in the jargon and state-space
notation of the “cult.” But matrix notation, regard-
less of how useful and efficient it may be, does not

- assist the uninitiated reader to understand the con-

cepts.

Surprisingly, in spite of all the obscure-looking
mathematics (the most impenetrzble of which can
be found in Dr. Kalman's original paper), Kalman
filtering is a fairly direct and simple concept. The
full-blown matrix equations can be made intelligi-
ble by being presented in a way that appeals to the
intuition, and a statistical error analysis or actual
system performance data can be viewed with an
intuitive understanding of the results.

The present paper presents a straightforward ex-
planation of Kalman filtering that will be accessible
to virtually all readers. The most salient features

are explained by means of a very simple example,
entirely free from matrix notation and complicated
dynamics. A second iilustrative example is taken
from the field of inertial navigation, since this is
one of the most fruitful areas of application for
Kalman estimation. This siightly more complicated
second example is used to describe more of the
concepts and terminology of Kalman filters (e.g.,
“state vector,” and so forth), At the same time, it
permite a closer look at the actual operations in-
volved in applving Kalman theory. Not all readers
will have the familiarity with matrix notation or
the patience to unravel every single equation in the
discussion of the second exzmple. The writer feels,
however, that the gist of this discussion will be
grasped by the majority of those readers who are
analytically inclined. -

The main body of the paper concludes with
qualitative comments corcerning the practical ad.
vantages and disadvanmages of the Kaiman tech-
nique, and the difficulties of applying it in actual
systems. Again, navization systems are particularly
cited.

Finally, an appendix dsfnes a criterion for opti-
mum estimation and derive; the optimum estima.
tion equations used in the examples. As is the case
with the main body of the paper, the appendix is
intended to be tutorial zrnd to provide, for those
readers who can recall seme of their probability
theory, a thumbnail cderivation of the estimation
cauatiens,



LEAST SQUARES AND MAXIMUM LIKELI-
HOOD ESTIMATION

In understanding the concept of Kalman filter-
ing, it is helpful to examinc the differences between
two basic techniques of estimation. These are the
so-called “least squares” and the “maximum likeli-
hood’ methods.* Toward this end, let us consider
the following example of an estimation problem:

Suppose that'we have a bucketful of nominally
100-ohra resistors, accurate 10 1 percent RMS,

*These terms involve some semantic difficulties which are
briefly mentioned in the appendix.

Suppose, further, that from this bucket we sclect
a single resistor and that we want to estimate its
actual value. We shall use an chmmeter with an
accuracy of 3 ohms RMIS randomn error on each
reading. The error in each reading is statistically
uncorrelated with any other. The chmrneter has
no systemic error or biases,

This simple example has most of the elements of
a complete Kalman flier, except that (1) it s a
one-dimensionz| problem and hence does not re-
guire matrix notation, amd {2) there are no dy-
namics in the problem. ]f the concepts in the
example are understood, their extension to the gen.
eral case is not difficult.
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Least Squares Method

... Least squares estimation involves fitting a curve

to the available data in such a way that the sum

‘square of the residuals to the data points is mini-

mized. For our bucket{ul-of-resistors example, the
curve to be fitted to the ohmmeter readings is sim-
ply 2 constant. It is well known that the icast
squares curve fit in this case is simply the average
of the chmmeter readings. The RMS error in the
estimate is 3/V'N, where N is the number of read-

_ings. Until at least en2 ohmmeter reading is ob-
- tained, no curve ¢»- <t and no estimate can be

made, In general, ne :ast squares curve fit is pos-
sible until there are a1 jeast as many equations as
there are unknowns,

The RMS error vs the number of readings is
shown in the upper curve of Figure 1.
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Maximum Likelihood Method and the Kalman
Concept

.

BASIC MAXIMUM LIKELTHOOD TECHNIQUE

Maximum likelihcod estimation introduces the
new factor of “weighting” into the estimation
process, in order to male= allowances for the accu-
racy of the measuring instrument (in our example,
an ohmmeter), as well as the accuracy of the thing
being measured (in our =xample, a resistor}. The
precision of the meter may be known, possibly,
from calibration datas thuat of the resistor may have
been learned from vendesr’s specifications, sampled
or 100-pereent-inspection: .data, or engineering judg-
ment based on experismce or analysis of similar
resistors. We thus have zvailable to us statistics con-
cemning both the guenticy being estimated and the
errors in measurem ent.

Now, suppose that, & our bucketful-of-resistors
example, a reading of €5 ohms s indicated on the
face of the ohmmeter. It is extremely unlikely that
this quantity can actually be the exact value of the
resistance. But a readinzg of “95” for the nominally
*100-ohm" resistor couid well be expected with this
meter, in view of its J«shm RMS error. In maxi-
mum Jikelihood eostirzstion, meter readings arc




the relative guality of the meter, and obtains an
optimum estimate of the actual resistance.

“In explaining how the weighting factor “works,
a few dehnitions are necessary.

Let

x = value of the resistance for the particular

mated) :

¢ = error in ohmmeter reading
M = ohmmeter scale factor, ie., output/input
{in the bucketful-of-resistors example,
e . M=1) 0
-y~ ohmmeter reading

-~ - T =Mxte e

o e |

The maximum likelihood weighting factor is
given by
o Mo? L e

. M2o? + o}
where
" o} = the variance or mean square deviation of
- the rasistance being estimated

3 "7 %= mean square error in the ohmmeter reading

As described in more detail below, the raw ohm-
meter reading y is weighted by the factor b in order
to get an estimate of the true value of the resist-
ance x. While the derivation of this factor is rele-
. gated to the appendix, one can see that b has at

* least one desirable attribute: it takes into account
the relative accuracy of the ohmmeter measure-
ments. Assuming the scale factor of the ohmmeter
to be 1, if the chmmeter were very accurate relative
to the precision of the resistors in the bucket (that

. is, o7 much less than o}, then the weighting factor
. would appreach 1. In other words, we simply would
use the raw value of the chmmeter reading in esti-
mating the resistance. If, on the other hand, the
resistors wers very precise, say 0.1 percent from
nominzl, and the ohmmeter were very inaccurate
and unreliable, the b would approach zero. In this
instance, we would reject the ohmmeter readings
" and simply use the nominal value of the resistance
as our estimate of x,

“But we have more to go on here than just intui-

tion. The value of b is derived on the basis that

. it renders the estimate optimum. Because of the
# - random errors in the resistors and ohmmeter, “op-
timum” is taken in a statistical sensc and is defined

-1 - resistor in question (the quantity 1o be esti- ~- -

Fiae Mo M LAioam b e e o

- ——

aweighted with a factor-which takes into -account—-- - -as-the condition in whick RMS error-in the esti-

mate is minimized. Like acv other statistically op-
dmum policy, whether in estimation or at the

w = - —Dblackjack - table,-the maximmum likelihood method

does not yield a uniformiy excellent result each and

every time. But b *plays thee odds” in such a way
» that, on the average, the Dast possible estimate is

obtained. ,

- We should note that the~e is a fundamental dif-
ference between the two eszimation methods—least
squares and maximum [fkeZhood—in the latter’s in-
troduction of the comcept of “weighting,” which
takes into account the acmz-acies of both the mea-
suring instrument and the “ebject being measured,

.- Least squares, as'we havewmsn, works by the fitting

of data to a curve by minimizing the souared dif-
ference between the dam and the curve fit—but a
good data fit does not nen=ssarily imply a good esti-
mate. Maximum likelthoo< obtains an “optimum”
estimate by minimizing the mean squared error in
;. the estimate—but with baZ data there can be a

poor fit.

The maximum likslthood estimate (see the ap-
péndix Tor a derivation} fis the ‘expected value of
the quantity being estmared, given the measure-
ment data. With no measurements, the axpected
value of the resistance of crur particular resistor is
nominal, or 160 ohms. We have no basis for stat-
ing that it is above or belcvww nominal, and our best
estimate is, indeed, 100 aivms. There is an error in
this estimate due to the dieviation of the resistor
from nominal; the RMS v2'lue of the error in esti-
mation is the resistor’s “razed” accuracy—1 ohm.

Now suppose a reading 5 taken of the resistance
using the ohmmeter. Thes reading will be weighted
by the factor
_ Mol
T Mol + 4l
I 3 L
T et + 32
= 0.1
--‘The estimate, bated oa Erst reading y,, is given by

, R, =100 + biy: — ¥&7)
where
2. = the estimate of thhe resistance x based on

‘ - »
one shmmeter rxading. (The A symbol i
frequently reserve:d for statistical estimates. )

b
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Suppose, for example, the reading on the ohm-
fneter was 95 ohms. This value of resistance would
be hl“hly unusual from 2 bucket of 1-pcreent RMS
resistors. It would represent a Se deviation from
normal, However, the maximum likelihood esii-
snate for this particular situation would be

£ = 100 + 0.1(95 — 100)
= 995 ohms .

a result which is not at all unrcasomable. Least
squares, on the other hand, would minimize the
sum square of the residuals by estimating 25 ohms,
This gives a good data fit, but most probably is not
a very accurate estimate,

Naturally, there are some errors in maximum
likelihood estitnates. The formula for the mean
square error in a maximum likelihood estimate is
given by

ool
. M?*ei + o}
~ - * = {(1~-DbM)ei

This equation is derived in the appendix, but it
can be observed that at least in one regard .the
formuls scems reasonable. Assuming again that
M = 1,-and supposing that we have a relatively
precise measurement (that is, o} is much less than
e3), then the RM3 error reduces to o, or the RMS
error in the estimate is simply the RMS error in

=
..o—
8

»

the .measurement. At the other extreme, suppose .

the measurement was very inaccurate relative to the
tolerance. on the resistors; then the RMS error in
the estimate is o,, the RMS twlerance of the re-
sistance. In this extreme case, we have rejected the
data (b = 0), and we are no smarter after the
measurement than we were before.

" For this example, the mean ;qllnre error in the
estimate is given by
.03 ={1 — bM)o?
=(t—-011
= 0.9 ohm?* .
cra:u = (.95 ohm RMS
The RMS error has been reduced from | ohm with
ne measurements, to 0.5 ohm after one meusure-

ment. This is not much of an improvement, and

is a reflection of the refative inaccuracy of the ohm-
meter,

——— e m——

THE ITERATIVE NATURE OF THE KALMAN FILTER

"--Now suppose that 2 sccond measurement is ob-

-tained on the ochmmeter. It is at this point that the
second fundamental concepn of the Kalmarn Filier—

‘i pécursive oOr iterative nature—rears its head.* It

€

is this concept, brought forth by Dr. K. E. Kalman
‘in 1960, that has rendered maximum likelibood
estimation a feasible and practical technique for
use on small digital computers in realstime appli-
cation. As a result of our first reading, we have an
estimate of x, which we call &, and can caiculate
the mean square crror in the estimate, or 0.9 ohin®.
Now, when the sccond reading is made, we recog-
nize similarity between this situation and the pre-
vious situation, when our estimate was a nominal
100 ohms with a mean square error of 1 ohm®. We
proceed to weight the data as belore, but realizing
that we have a better handle on the resistor than

“we did before, The new weighting factor is

Me?

Eeaam e .b'. R N
. M'c‘ + o}
= fUQ}
L KOS+ 3
= 0.091

which is slightly less than the previous weighting
factor of 0.1, This is because, as a result of the first
chmmeter reading. we have a more accurate esti-
mate of x, and we will tend to weight the second
ohmmeter reading more Hghtly. Using this new
vajue of b, the cstlmatc based on the two ochmmeter
readings is

2 =% + b(y: — MR))

where b = 0.091, In this equation, (y: — M%) is
the difference between the actual reading y; and the
value of the ideal reading which wouid have been
obtained if S x: had been pcrfcct It is very important
to note that the form of this equation is identical
to the form of the equation used to ke the esti-
mate with the first reading. It is not necessary to
save the first reading y,; the only information re-

*This is pot to imply that deast squares ¢annot be made
iterative~it can. In the example given here,'a new least
squares curve fit can Le detived by updating the old
average 1o include the new cata point:

A = n— l; - I

xa n .-t n?"

The result can be grneralized.
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quired 1o make the second optimum estimate is the
first optimum estimate, the computed mean square
error in the estimate o0 and the mean square ohm-
meter error ¢f. Again, a mean square error in the
estimate can be computed thus:

o, ={1-— bM)o?
=(1— 0.091)(0.9)
= 0.82 ohm*

or 0.20 ohm RMS.

>

It can be seen that a recursive or iterative proce.
dure is developing. Each time a reading is taken
a new weighting factor b is computed. It is applied
against the data to yield a new esumate x, and 2
mean square error in the estimate is computed. The
latter quantity is necessary in computing b for the
next reading. but past data need never be saved.
The equations involved are suinmarized zs shown
here.

1. Comnpute weighting coefficient:
Mo*

ol

Tn-1

b= + o}

Mo

2p.1
2. Use weighting cocfficient to make new esti-
mate: . .

M
Xn = Xy T+ bn{Yll - Mxn-l)
3. Updatc mean square error in estimation:
el =(1— b.M)ei
LY . Apan .

To start this cyclic process, three quantities are

needed: 1} the expected value of the item to be
measured, prior 1o the taking of any readings;
2} the mean square deviation about nominal value
of the item: and 3) the ncan square error in the
measuring instrutient’s indication.

-

The importance of the Kalman process’ recursive
nature cannot be everemphasized. Review of the
equations presented above shows that no past d: a
need ever be stored. Each estimation is identical
in procedure to all those which took place before
it, but each has a new weighting factor b computed
to take into account the sum total effect of ail the
previous estimates,

If our resistor example is esrried out for succes-
sive measurcinents and esti . Jons and the RMS is
~mnputed. the sesults point owt (Fieure 1) that
mavhmum Lkelihood Kalan estimation is always

more accurate than the least squares method. Of
course, the bucketful-of-resistors example which we
‘have cited here is a highly artificial one. It is in-
tended only to scrve to bring out the basic concepts
of Kalman estimation, and no gencral quantitative
conclusions should be inferred from the information
presented in Figure 1.

Effect of Erroncous Statistics for Resistor Example

In the preceding discussion, it was noted that
three quantitics had to be known before the cyclic
application of the Kalman filter equations could
be initiated. For the buckedful-of-resistors exampile,

1. The expected value of the resistance x prior
to the taking of any readings—namely, 100
- ohms
2. The mean square deviation about nominal
—namely, 1 ohm?
3. The mean square error in the ohmmeter
readings—namely, 3 ohms?

In any actual situation, these three statistics are
only approximately known, and are often, at best,
only estimates or educated guesses. Let us now take
a look at the consequences of using vague or errone-
ous statistics in the estimation process.

For simplicity, we will assume that only the sec-
ond of the three quantities listed above is in error:
that is, the RMS deviation of the resistors which
is assumed in the flter equations is 1 ohun, but the
actual RMS deviation of the resistors in the bucket
15 some value other than 1 ohmi. The etfect on the
errors in estimation for various values of the true
RMS deviation will now be examined. |

For illustration, let us assume that the true RMS
deviation of the resistors is 2 ohms, Using the
formmula previously presented for b, the optimum
weighting coefficicnt is

b= Mot
MFoi + of
_ 12
1520 + 3
= 0.308
This weighting cocflicient will not actually be ap-
plicd, however. Under the erroncous assumption

that the bucket of rewistors taleranee is 1 percent
RMS. rather than the actual 2 pereent RMS, it was
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calculated in the previous section of this paper that
the cocfficient to be used in the estimation process
was 0.100. This coefficient is too sinall and would
result in the placing of o0 little weight on the ohm-
meter reading. The RMS error in estimating the
resistance is computed to be 1.82, in contrast to
the error of 1.6€ which would have resulied if the
optimum weighting of 0.308 had been used.

. To explore the situation more completely, Fig-
ure 2 was generated. Based on the best available
data or enginecring estimates, the resistor tolerance
was assumed by the filter to be 1 ohm RMS, and
the ochmmeter accuracy to be 3 ohms RMS. The
effect of the real world’s difference from the arti-
ficial world assumed in the inodel is shown by the
various curves in Figure 2, plotted for the five con-
ditions that actual variation in the bucket of re-
sistors is 14, 1, 114, 2, and 3 ohms RMS. Two
general cases can be observed in Figure 2:

Case 1. In this case, the rssistors are much more

out-of-tolcrance (welative to the assumed

. chmmeter accurztyy) than assumed, and it

is possible for the Kaiman procedure to

yield estimationr errors worse than those

obtainable with ardlinary least squares esti-

mation. In other wsords, the weighting co-

efficients were o small, and we should

have given more coedence to the ohmmeter
readings.

Case 2. In this case, the actiual variation of the re-
sistors s smaller dhan assumed, and the
estimation ‘errors mre still better than the
“optimum.” Howewer, by having been too
pessinistic in the msumed tolerance on the
resistors, we toos stoo little advantage of
their inherent precision. We would have
bheen better o©ff Just to use the nominal
value of 100 ofz== and to jorget the ohm-
meter readings altzacther.
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‘The moral to our storv: Real-world statistics and .

dynawmics will generally differ soinewhat from the
conclitions assumed in the Kalman filter cocficients.
Before the Kahnan procedure is used in a particu.

lar application. a sensitivity anahsis of the sort

descvibed above should be made to assess the risks
involved in' the event the seal world should happen
1o differ appreciably from that assuned in the
model. (If onc is concerned abouit the possibility

-that the real world has statistics other than thase

assuined. one might be tempted to consider “hias-
ing” the statistics to be emploved in the flter,
thereby beduing against this possibility, To accom-
plish this biasing. it would be necessary to alter
a priovi statistics in the proper direction to reduce
the risk that weuld be invebved if the real world

- were different framn the model, However. it can be

shown that tricks of this sort are preuy futile. ‘The
best policy is to use the expected values of the o's,
hasecl on the available data. and o et it go 2t that.)

APPLICATION OF KALMAN FILTER
TO DYNAMNIC SYSTEMS

The bucket-al-iesistors example ilustrates some
salient features of the Kahman proacedure, but ine
cludes ne dynamics. Also, it is a one-diiensional

problem. The following example illustrates appli-
cation of the Kalman technique to a dynamic,
multi-dimensional system.

The example under consideration involves a sim-
plified inertial navigation svstermn.* The ravigation
svstern is described by the ioop shown in Figure 3
and is subject to only thre= error sources: initial
position crror. initial velocizy error. and initial tilt.
We will assume that the svstem has available ex.
ternal positton fixes every 10.5 minutes {or every
one-eighth Schuler period). and these position fixes
can be used to update system aceuracy. The tosa]
assurned RMS crrors acting on the system are thus:

Error

3x{0). initial
posttion error

5x(0}, initial
velocity error

¢+ (07, initial tilk

r. position-fix
error

Magnitude
1000 ft RMS |

6 ft/sec RMS » All uncorre-

late-]
G.1 mr RMS

1,000 fu RMS‘

*The reader who is unfamiliar with inertial navigation
can ignore the physical interpretation of this example,

yee hencfiv just as well, Figure 3 can be taken at lace
value,
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Our example will consider two cases. Case 1 in-
volves simply correcting the inertial navigator posi-
tion error with the external position-fix data.
Physically, this might just mean adjusting the posi-
tion display to agree with the externally indicated

.position. The velocity and tilt errors are unaffected
by this procedure, and will continue 1o propagate
away, unahbated.

Detailed analysis of this case would do nothing
to promote better undc-mandin';: of Kahwuan and is,
hence, omitted here. Position error as a function of
time is presented in Figure 4 to provide a basis for
comparison with the Kalman case. which s also
shown in the same fizure.

Case 2, emploving the Kalman approach. will be
treated in somie detail. In order to deal with the
dynamic, multi-diniensional aspects of the problem,
the concepts of “state vector,” “transition matrix.”
“measurement matrix,” and “cevariance matrix”
will he introduced. Tt is casily verified that the posie

Figure 4. Comparison of Straight Position Resets with Kalman Resets

tion, velocity, and tilt errors as functions of time
are given by

8x(t) =3x(0) + %8&{0}-—- R(1 —¢)$.(0)

3x(t) = €33(0} — Rusg, (0) (2)
&, (t) = ':i.: 5500} + g, (0)

inwhichs== sinwt andc = cosot. and w = Y /I
This ¢an be written in natrix notation as

sxy] |1 2 —R(1-e [sx(or]

30 =0 ¢ —Res sz (®

$o () 0 = ¢ (0}
l\(l:l

Ry. a change of natation. (3) can be written
x(t) = & ()0 {H

where the symbols of {4} denote the correspondiny
matrices in(3), The quantity x¢t)is ealled the system
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“seate vector.” It is nothing more nor less than a
convenicnt notational form. Its use results in neat
equations such as {4}, which aid and assist com-
prehension, and avoids messy equations such as
(21, or, worse vet. complicated equations involving
double and triple sumnmations, The dvnamics of the
system are represented by (1), which is called
the “transition matrix.” Ac will be seen. &{t} 1
used to 2 censiderable extent in the Kahuan filter.

In the resistor example, the ohmmeter measure-
ment y was related to the resistance x by the re.
lation '

y=Mx+e (3)

where M was the meter scale factor (M = 1 in the
resistor exantple). In mulii-dimensional probleins,
it is convenicent to have a similar matrix equation.
in which the measurement is related to the system
state. In the present exaniple. the measurement y
is a position fix, It is equal to the actual position
error ex plus a position fix error «:

y=38x+r {6}

x=] 8
¢,

"We can obtain the relationship (6} in the format
of (5} by writing

ox
y=(100)| 8«
. Le,

+ ¢ {7}

0:18 can rcadily see that {7) is identical with (6}.

3

By defining
M=(i00 (8)
equation (7} can be written in matrix notation;

y=Mx+¢

M is called the “weasurement matrix.” It simply
denotes the part or the component of the state
vector x that is heing measured.

In the bucketful-of-resistors exainple. it was seen
that a fundamental part of the filter was ihe mean
square error in the value of the recistors, namely
(" ohmi* Similarly, in i Li-dinwnsional dynaniic
S)ISl(‘l”S. SIIC}I a l‘!ll:l“‘il_\' is rl"i'llil‘t‘(] in ('("!IIHHL‘ the
aptimum weighting cocfficients. This quantity is a

matrix called the “covariance matrix.” For our ex-
ample, it is made up thus:

[ Mean square  Cross. Cross- 1
position error  correlation correlation
between btiween
position and position and
velocity errors  ilt errors
Cross. Mean square - Cross.
correlation velocity error  correlation
P. = | between between
position and velacity and
velocity errors tilt errors
Cross- Cross- -+ Mean square
correlation correlaxion tilt error
between between
position and  velocity and
_tilt errore tilt errors -

Initially, it was assumed that the mean-square
position, velocity, and tilt errors were {1,000 f{t)3,
(6 ft/sec)?, and (0.1 mri® respectively—all uncor-
related. Hence, the initial value of P, is given by

(1000}* 0 0
P=| © ®: 0 T[T
0 0 (0.0001)?

As with the resistor cxample, the value of P, must
be known ahead of time. It can be determined from
physical tests on stmilar systemns, by error analysis,
or, if need be, by best engineering judgment,

Now the covariance matrix P, is not constant
with time, The initial velocity error will start propa-
gating into position and tilt error, etc., according
to equations {2} or {3). It can easily be shown
that the covariance malrix at some time t can be
determined from P,(0) by

Pty =2() P (D)2 ()T (10)

&(t) was discussed above and defined in equations
{3) and (4). {The symbol ¢(t)T means “the trans-
pose of ()™ and simply denotes the exchange.
of the rows and c<mjumns of & {t}. Transposition
appears frequently in error anabvsis equations in
matrix form, but can be ignored as far as unders
stancling the gist of the equations.} Equation {10),
while not devived bere, certainly appears to be rea-
sonable. In other words, i & propagates x, it is
reasonable o expect diat ¢ “squared” would propa-
wate the covariance of x. Considuration of a simple
scalar example would illostrate this,



T P(t)=

0,120

0.154'

| 0537

It must be assumed that, in addition to the iner-
tial navigation hardware, there is a digital con-
puter to perform the calculations described below.
The computer is initialized at the initial value of
P,. At t = 10.5 sec, the first checkpoint is obtained.
(At this timic, the computer wil) use the checkpoint
data to make an estimate of the position, velocity,
and tilt errors in the system. In making the esti-
mate, the coraputer will consider the velative ac-

. curacy of the position Ax data and the inertial

navigation system data. To do this, the computer
requires a current measure of the accuracy of the
incrtial navigation systern at t = 10.5—namely, the
covariance. The computer obtains this by extrapo-
lating P;(0), using equation (10) or its equivalent.

1
—R(1—¢) |} (1000): © 0
—Res o (6 O =
c 0 0 (10):

0.154%  0.537™
021t  0.597*

0.597v  0.339vF

The diagonal elements are the mean square posi-
tion, velocity, and tilt errors, respectively. The off-
diagonal elements are cross-corrclations between
these same three quantitices.

It i§ instructive to examine the detailed expres-
sions for a couple of these elements. just to see that
equation {10) gives reascnable results. For exam-
ple, the upper lefi-hand element of {11) is mean
square position error and is given by

Mean square position error at t = 10.5:
H
= (1000)7 + (i) (6)7 -+ R¥(1 = ¢)3(10°%°
= 0.129 fi*

= 3,590 ft RMS

- =R{l —¢)

(11)
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By examining this expression, we can see the inizial
position error; the effects of the initial velocity
error, which propagates into position as a sine 5/w;
and of the initial tilt error, which propagates inte
position as a one minus cosing, ~R{l — ¢). Had
the initial conditions been eorrelated. asis olten the
case, the expression wouid have been more compli-
eated. It would have had terms invelving the cross-
correlations of the initial errors, mdicating that the
effects of these errors tended 10 add or cancel.

The element in the top row, second column of
(11) is the cross-correlation between position error
and velocity error. When written out in detail it is

Cross-correlation between velocity and position
errors at t = 10.5:

-:-;-c(ﬁ)‘-' + [=R(1 ~¢)][~Res}(10-}?
= 0.154"% ft ft/sec

The first term is due to the initial velocity error,
which propagates as a sine into position s/w, but
at the same time diminishes as 2 cosine ¢. The sec.
ond term is due to the initial tilt error, which
propagates simultaneously into position and velocity

_error as —R (1 — ¢) and — Ruws, respectively, and

hence contributes the cross-correlation as shown.
Again, if the initial errors had been correlzted, the
expressions would have been more complicated, buc
the idea is the same.

In the resistor example, the data y was weighted
by a cocfficient b given by

.

F 4
Mol
Mrfoi + of

b= (12)

The same thing will be done here, except that the
cocflicient is a matrix given by

b= P,MT(MP,MT + P,) {13)

-

In equation (13}, P, is the covariance of x, and
is analogous to ¢} m (127, M is the measurement
matrix, and is analogous 1o the scale faclor M
in (12). P; is the covariance of the position fix
error, and is analogows to o} in equation (12). The
superscript ~' denotes mactrix inversion, and is anal-
ogous to division {and & this example it will be
seen that it is division). As remarked above, the
transposition superseript T can be ignored as far
as understanding the gist of these equations is con-
cerned. After taking inte mccount the idiosyncrasies
in notation, it can be scem that (13} is very similar
in appearance to (12}, But, more importantly, (13)
ts identical in concept to (12). All the discussion
regarding b in the resisoor example applies to this
example. If one underseends the gist of (12}, then
(13} is no longer a myseerious, unintelligible mass
of matrices.

"Equation (13} will be given a more detailed ex-
amination. In doing so, it will be convenient to
write P, and P, in terms of their elements.

Using the definition of M and this notation for
P, and P., equation {L3) can be written out

Pyy P Py
P,=|Px P Py
Py P Pun

Ps = [Per]

where the numericai vofives of the elements of P,
were computed in (L1), and Pee is simply
(1,000 f1)=.

Using the definitios ©f M and this notation for
P, and P,, cquation {13) can bc wrilten out:




-

w‘) b=PMI({MP,M* + P.)™!

Py Pi P 1 {t 00
=Py Pi: Py 0
 Pav P Pu {0
[Py} [Pu + Pe]?
=[ Py ‘
_P:ﬂ
Py + Pe 0.93
Pn.
- — = A3
X P+ Do 0.11
— T
[P+ Pl L0

Matrix inversion in this case involved only scalars
P,y = 0.129* and P, = 0.01", Hence, inversion
@ was in reality division by 0.139™.

Before discussing a little of the significance of
(14), let us go through the inechanics of making
the Kalman estimate. Suppose the position fix indi-
cated a position error of —4,000 ft. Then, the com-
puter makes an estimate of position, velocity, and

> tilt error

M
x:

by

~0.93

0.1 §{—4000)
. Lo3gw

C—3710 {t

—4.4 ft/sec

| —0.15¢ mr

In the resistor example, it was necessary to ac-
count for the nominal value, or mean value before
a measurement was made, of 100 ohms. In this
example, the mean errors are zero (although, of
course, the mean square errors are not zero),

The hrst clement of b is given by

P"l
P b — .—-—-._
YT Py Pee

P,y Py Pna | -1
Pyy Pax Pa 0 |+ [Pee)
Pn Pa: Pa:l 0

4

(14)

in which Py, is the mean sguare position error at
t = 10.5 and P, is the mean square position fix
measurement error. Henee b, is identical in form
and meaning to the weighting cocfhcient in the
resistor example. This reinforees the stateinent that
the matrix equation (13) is identical in concept
to (12). All the discussion of the resistor example
catries over completely here and does not need 10
be repeated.

The second element of b is given by

P.,

b =+ P

{15)

and involves the cross-correiation Py, between posi-
tion error and velocity error; b, is used to weight

- position error to yicld an estimate of velocity crror,

If the reader is still somewhat confused as to how
the Kalman flter can simultancously estimate three
quantitics—namely, position, velocity and tilt—from
a noisy measurement of only one quantity, perhaps
the following discussien will help.

Suppose that in a certain area annual rainfall,
the height of corn. and farmer's annual income arc
observed to be related: they ail end to increase or

decrease together, Then, by observing only one of -

them, 1t is clearly posible to get an estimate of the




Py =

it

pr

other two, using empirically derived relationships.
If there were onlv one dominant causal factor, say
annual rainfall, then this estimate might be a pretty
good one. I[ other independent random factors
existed, such as market conditions, then the esti-
mate might be less accurate,

In an analogous manner, the position, velocity,
and tilt errors can be simultan=ously estimated from
a single data pomnt Instead of an empirical rela.
tionship such as the one mentioned in the paragraph
above, the proportionality factor b is computed
using the covariance, The factor b, has the units
ol, and can roughly be interpreted as, “velocity error
per unit observed position error.”

After making the optimum estimate of position,
velocity, and tilt, the mean square errors will be
reduced. In the resistor example, the error in esti-
mating the resistance was given by

c;= {1 — bM)oi

In the multi-dimensional case, the corresponding

formula is ) )
Py =(I-—bM)P,

Expanding this equation in terms of its elements

10 07_7 Py J(OOT[Py Pu Py
01 0 Puo + Pee P:: P Po
Pa
0 01 P,y + Pec Py, Py Py
Pu
Pll + PCC
- - {16)
| ~ Py 0 0 Pn P Pus
N Pue P. Pu P
—_——1 1 D
Py; + Pee Py Py: Py
Pt
—_——— 0 1
Py + Pee _
PuPee P — PPy, P — PPy 7
P + Pee ¥ PutPee " Py P
Pl‘.'Pl‘. %2 P:'-'P‘!
P d P, TPt Pn T Pt Pu
. P1=PII P1‘.‘P‘.’3‘ ia
P o e iy W T— . B —_—
o P|| + p(g P-: P|| "'- P:t P-I’ PH + PCC o

The diagonal clements of equation {16} are the
ncan squarc errors in estimating position, velocity

15



\_) and tilt. The nurﬁerical values of the P's can be

~r

‘g‘é

obtained from equation (11). Using thesc values,
the following table can be constructed.

Quantity RMS Error before RMS Error after
Optimum Optimum
Estimate Estimnatr
Position 3,600 ft 960 {t
Velecuty 458 ft/sec 1.97 f/sec
Tilt 0.184 mr 0.114 mr

There is a considerable improvement not only
in position, which was estimated slightly more accu-
rately than the 1,000 ft RMS position fix, but also
in velocity and tilt. This is bcecause there is strong
correlation between position error and velocity
error, and between position error and tilt error;
that is, P,. and P,, are large. A" more detailed
analysis reveals that initial velocity error is the
dominant contributor to the RMS position, velocity,
and tilt errors existing at t = 105,

Effect on Errorsat t = 10.5

Error Source Position Velocity Tilt

Initial position,

1000 ft RMS 1000 ft Oft/sec Omr
Initial velocity,
6 ft RMS 3400 423 0.17
Initial tilt, 0.1 mr 600 1.73 0.07
RSS Totals 3600 4.59 0.184

The computer, based on the covariance matrix it

* has updated, knows that the velocity and tilt errors

in the system are both roughly proportional to the

observed position error and can make a relatively
good estimate of them.

After the computer makes the optimum estimate,
it can update the covariance as indicated in equa-
tion (16). It is now ready to extrapolate the covari-
ance as in equation (11), until the next position fix
is obtained. Again, as in the resistor example, a
cyclic or recursive process can be scen to evolve,

The question arises—what should be done with
_the optitnum estimates? The cotputer has two op-
tions. One is to do the obvious: Adjust the position
and velocity registers and physically *torque out”
the estimaicd tilt. The other option is to leave the
Schuler loop alone, and to compute corrections to
the inertial navigation system outputs as tine pro-
gresses, But, this involves extrapalating the correes
tions using cquation (3), and is an avoidable

tomputational complexity. By choosing the former
option, the mean value of the system errors is alwavs
zero, and the Kalman equations are simplified.
‘They are summarized as follows:

Initialize P. {0} and P, based on: a priori

knowledge of system characteristics.
) b

3
Extrapolate covariance.

P.t)= @) P, (0)(1)7
t
Compute optimum weighting coefhcient matrix.
b= P.MT{MPMM* + P}
t
Obtain external data y and make optimum
estirnate of system state,

& =by
'
Apply corrections to system.
t
Adjust P, to account for optimum estimate.

Pt )= (I —~ BADYP,(t)
I

Before leaving this example, one final point will
be made to compare. once again, the maximuin
likelthood estimation with an ordinary least squares
curve ft. Suppose that, shortly after t =0, two
position fixes are obtained with random errors of
1,000 ft RMS. Clearly, if we attempt to make a
least squares curve fit of 2n 84-minute sine and
cosine to these closely spaced, relatively inaccurate
data points, very large errors would result, But, the
Kalman filter recognizes this problem automati-
cally. When the covariance matrix is updated, the
cross-correlation between position and velncity is
found to be very simall:

Pis == e(6)* + [~R(1 = &))[~Ros] (10)* 2 0

This is due to the sin wt and {1 — cos ut) factors,
which for short interval t are approximatcly »ero.
The resulting b matrix is

B Pu K h_I_
P); + Pg; 2
P!'.‘
b= Po+ Pee | 0
Pr;.
- : 0
L Pt Pee ] L




With the b matrix so computed, the computer

will make a position correction equal to V2 the
observed position fix data, and will make aimost
zero corrections to tilt and velocity, The RMS posie
tion error after this procedure will be reduced by
17V 2, and RMS wvelocity and tilt exrors will be
unaffected.

In general, when properiv mechanized, the

Kalman filter will not introduce into a svstem errors
_which are larger—statistically speaking-than the
errors which existed prior to making the estimate.
This is true regardless of how poor the reference
- - —.—data are.-Jt s definitelv-not true of least squares,
== -~as-was tllustrated in the bucketful-of-resistors ex-
ample.

SOME SALIENT GENERAL FACTS

~ REGARDING KALMAN FILTERS

~ 1. Kalman techniques-apply in a practical sense
principally to lincar systems.

2. The Kalman filter requires use of the covariance

_ matrix with calculations. In effect then, the com-

puter has o capabiiity - for- reoi-time on-board
error aralysis. In fact, this crror analysis capa-
.bility uses somewhat sophisticated techniques
mcbich wicne oot prven zugilabls eovpesl vpgee non

[
1
b

- aceepts various external daa
and .aLes corrections to the system “state,”
which in the case of inertial navigation systems
might include position, vejoeity, tilt. gyro bias,
azimuth error, ctc. This makes it, in effect, an
alineinent process. In fact, there is no essential

variables. All the eguations remain otherwise
the same.

The Kalman filter can make use of human
judgment. For example, we saw that the com-
puter made use of the mean square position-fix
error in computing the filter coefficients. Suppose
that an airplanc pilot were involved in the
position-fix observation. It is possible he would
have much higher confidence in some fixes than
in others, say with a sighting of the airfield tower
frorn 500 feet compared to 2 landmark observa-
tion from 13,000 feet. If the control panel were
so arranged, it would be possible for him to indi-
cate a rough confidence level in the fix when he
entered the data into the computer. The com-
puter might use a preset of table of RMS fix

~ errors, corresponding 1o whether the pilot indi-

1 s

‘cated the fix was “excellent,” “good,” or “fair.”

Perhaps the biggest computational problem in-
volves updating the covariance matrix. In the
example, it was stated that it is updated by the
formula

P.(1) = $(1)P,(0)&(1)T

This would be a relatively simple calculation if
& were available. But, @ is hard to obtain when
the system is thne-varving, as is the case with an
arr¢raft. The direct method 1s to numertcally

integrate the dynamical equations describing the
system, assumning unity initial conditions. If the

system is of nth order, then this involves inte-
grating n simuitaneous differential equanons,
This uses up much computer time and space,

cilzrence betiveen the naviaation and alinement
:'f'aec':*.:ni.'.aziom when using a Kalman Rlter. and
::.; vanous modes such as “coarse aline.” “fine
aine” and “navizate” are all done away with
s far as the flier is concerned,

\‘-': 2w in the exampie above that the measure-

nent

i matrix was given as
M={100)

when the external data was a position fix. In
cas> reference velocity had been availuble, the

atrix would have been
. M=(019)
T= motinr e : :
- Orier wercs, by sitmply using the apprepriate
Somairiy 1)
o Nothe coniputer ¢an accept any form
¢ cx:--r:::.f

Gata that are related to the state

Y4 é’/&?f e (o e pOSSIZIK;y of rounr.:{on/

CITors,

Another approach is to update the covariance
by steps, by repeated application of the equation
above. If the time increment is small enough,
then an approximate expression for the transi-
tion matrix can be obrained analytically by as-
suming the parameters are constant in that
interval. For a specific example, assume the §y3-
tem is an aircraflt inertial navigation svstewn.
Then, if the time intenval is thort enouch, we
€an assume thac all the parameters, such as lati-
tude, are constant, and the transition matrix

takes on a formn similar to cquation (3} in the

example. (The aireraft’s mancuvers can be ae-
counted for in a short time interval by aceemu-
lating velocity pulses from the accelerometer and
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coupling azimuth error into velocity error
through the veiocity increment.} But this pre-
eedure replaces the problems encountered above
with the problems of many matrix multiplica-
tionis, again using up computer time and space,
and generating the distinet possibility of round-
off errors. If the round-ofl errors are large
enough, some of the elements in the covari-
ance could possibly be of the wrong sign, which
might create 2n unstable Joop.

There are other approaches to updating the
transition matrix. But, whatever the technique,
updating the covariance matrix remains a diffi-
cult problem at best.

Another problem of appreciable magnitude is
that of properly modeling the system. This prob.
lem takes on several aspects. These are discussed
below.

a. There is a tradecfl between complexity of the
system model versus computer complexity
versus accuracy. As a specific example, con-
sider the dynamics of an inertial navigation
systemt, It is possible to derive an extremely
complex model of such a system, considering
only the linear aspects. One could include the
Schuler loop, 24-hour effects, various instru.
ment parameters and sensitivities, including
instrument biascs, scale factors, misalinements,
random effects, trends, g and g* sensitivities,
variout servo phencmena, random driving
functions such as gravity anomalies, phase of
the moon, complex modeling of the reference
data, etc., ete, Clearly, it is impractical to in-
clude this model in the on-board computer,
It is necessary then to make tradeofT studies
to get the right balance between improvement
in system accuracy and available computer
capability.

b. Another difficult problem arises when the ex»
act model of the system is not even well
known.

An example might occur in the determina-
tion of the orbit of a sarellite. Suppose the
computer thinks the only crrors arc uncer-
-tainties in iniial position and velocity of the
satchiite. After obtaining sufficient cxternal
data, the computer thin' it has trimmed up
the orbit 6 fz Kalman, and the b coeflicients

approach zere. But 7 tmeer e -iomio-
and unmodeicc force: s.:t ozt owt it tren_=x
the actual orbi of the e 2 . -i2-
diverge from the comnyisz 200 T e
nal data will now be reisciez a2z -s iz

will go uncorrected

By judicious moceling tezhniz_e:r soze

¢. The problem of erronecus statistics was cise
cussed In connection with the bucke: of re-
sistors example. There, it was scen that if the
resistors were much worse than assumed in
the model, poor esthnates were achieved. If
the ensembie of systems is the same as that
assumed in the model, then the Kalman pro-
cedure will obtamn optimum performance out
of this ensernble. But the Kalman filter can-
not make good systems out of bad ones.

3. Implementation of the Kalman filter can im-

pose—depending on the application—heavy de-
mands on the computer. The practical engincer
will explore various schemes whieh can provide
the essential benefits of the Kalman approach,
but which will provide relief with regard to com-
puter time and space. Besides the modeling ap-
proaches discussed above, other compromises
with the full-blown theory should be explored:

a. A body of theory has been developed regard.
ing what are called “sub-optimal flters.”
These are Kalman-type fliers, except that
certain portions of the sysiem state are as-
sumed to be uncoupicd from the remainder.
For example, it might be assumed that the x
and y channels of an inertial navigation sys-
temn are uncoupled: this would tenore 24-hour
and azimuth channel effcais. It turns out that
this type of approach vields 1we or more
Kahuan-type problems for the computer to
solve, except that the sum of the parts is less
than the whole. In other words, it is easier for
a computer te deal sinwhiancously with two
third-order probitins than with just one sixth-
order problem.

b, When data comc in at a high rate, it becomes
unpossible for the computer 1o process the
data with the complete Kahnan cquations.
Onc approach is t» prefilier the data by
analog or digital micans and 10 have the con-
puter deal with the prefiltered data aca woch
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slower rate. Another approach is to have the
<: - Kalman filter ignore the prefiltered data alto-
~ - gether, and 10 have the high-speed data ener
... :the system by some more conventional means,
. .and the slower-speed data processed in the
+ " Kalman manner.
. In general, when the data vector y consists

of n components, theory savs that the Kalman

filter has to invert an n X n matrix to derive

- the filter matrix b. But matrix inversion often

is a very difficult process 1o do in real time,

" even for small n, such as 2 or 3. One device
" “to avoid this problem, when the input data
"7 rate is low, is to consider the components of

* :. -the data vector to be coming in singly. For
... example, suppose the data consist of two com-
.- ponents, latitude and longitude. The com-
puter could be instructed 10 process just the

B L Coea

latitade data first, and it would have only to
“invert” a 1 X 1 matrix which, transiated,
means it only has ro perform a simple divi-

‘sion, Having processed the latitude data, it

can accordingly adjust the covariance matrix

to account for them, and then process iongi-

tude.

When the mission: is known beforehand, con-
sideration should be given to precalculating
the b coefficients. This can yield considerable
computer time and, perhaps, space savings.

In short, the full-blown, doctrinaire ap-

. proach to Kalman could well lead to imprac-

tical demands on the computer. An inventive,

- shortcut, hybrid approach might yield the

benehits of Kalman without overloading the
computer.



2 ApPENDIX

The purpose of this appendix is to provide an
abbreviated tutorial derivation of the equations ap-
pearing in the two examples cited in the main body
of the paper. This, in turn, should reveal the prin-
ciples underlying maximum likelihood estimation.

Inasmuch as the purpose of the pzper is tutorial,
and since general derivations are available in nu-
merous other places, genera! equations will not be
derived. Some difficulties in the manipulation of

matrices is avoided in this way and, at the same
time, little is sacrificed with respect to understand-
ing the concepts. To assist the reader whose knowl-
edge of probability notation may be hazy, the
derivation given below makes use of specific refer-
ences to the bucketful-of-resistors example.

We start out by defining a criterion for opti-

~ mality. Given some quantity x (e.g., unknown value

of a certain resistor} which we want to estimate,

the symbol R is assigned to denote this estimate.

Suppose we have a measurement y (e.g., an ohm-

meter reading). The error in estimation is then

* given by x — & This error has associated with it
some loss which we arbitrarily define as

Q=(x-~%)K?
where
Q = loss {e.g., in units of dollars) associ.
. ated with the error in estimating the
value of the first resistor

{x — £)* = error squared in estimating the re-
sistance

K = positive constant (e.g.,, in units of
-~ dollars/ot =s*) which converts
squared estimation error into units
of loss

Now, we would like somehow to minimize Q,
given the measurement y. But there is clearly no
way to guarantee this, because of the random na-
ture of the process; O has a minimum value of {,
and to guarantee this would imply we could guar-
antee a perfect estimate of x. We must resort to a
statistical definition of optimum. If the statistics of
x and y are known, then the expected or mean value
of Q can be determined. { is defined as being opti-
mum if, given the data v, the expected value of Q
s minimized. Written in symbols:

Choose £ so that
Q = E{(x — X)? K*}y] is minimized

{The symbol E [A]|B] denotes the expected value
of A, given B.) This is our criterion for optimum
estimation. .

We can determine the minimum expected value
of the loss by setting its derivative with respect to
=0

oE .
Elemic-vxly
= 2K* Ex]y) - 2K* E[&]y]
The symbol E [R]y) denotes “the expected value of
our estimate, given the data y.” But, we are free
to choose X in any manner we choose, and the
expected value of § is simply whatever we choose
it to be. In other words,

ERRly} =%

Putting this into the expression for the derivative
and setting the result equal to zero yields the follow-
ing expression for the optimum estimate

% optimum = E [x}y) {A-1)

L]



This is a very general and important result. To re-
trace the steps above:
1. Given a weighted, squared estimation error
type of loss function
2. Given @ priori statisics on the quantity being
estimated x and the measurement y

3. Given somt measurement data v

4. Then the expected value of X given these data
can be computed (just how will be explained
below)

5. The optimum estimate R is equal to this ex-
pected value.

It can be noted that the weirhting constant K?
drops out and does not enter into the determination
of X. This is perhaps intuitively obvious for this
simple scalar case. It is also true for the multi-
dimensionaj case in which K* is replaced by a
weighting matrix.

Now suppose the quantities x and v are gaussian.

If this is the case, then we can obtain a special
- F) . . -

form lor X. This form is the same as was shown in

3 the examples.

Recall that the general formi of a gaussian proba.
aility; density function is as shown below:

“l. i 1 ] . {r-n:rﬂ
‘. p{r) = _'V"T?.::e 207 (A-2)
where '

e pere- =

_I = gaussian-distributed random variable

op = standard deviation about the mean
m, = mean value of r

Then et the probability density function of x
be as follows:

1 (el L

e " T {A-3)

P(?‘):— 7m0,
where

o: = standard devidtion of x (= | ohm in ex-

ample)
m, = mcan valuc of x {= 100 ohms in ex-
ample)
Lee
—_ y=Mx+. (A-4)
b here M = scale factor (= ! in example)
and ¢ = measurement crror

Assume that ¢ is aosian with zero mean and
independent of x:

! i
ple)= VZre L (A-3)

where o, = standard deviazion of ¢ {= 3 in ex-
ample). '

Now, according to the general formula (A-11,
we require an expression fer E {x]y). This can be
obained if an expression for 1lic conditional proba-
bility density function p{x{w1 can be obtained—by
averaging p{x]v), E{xlvt results. But, what is
p(x]y)? In words, it is the probability density func-
tion: of x, given the dat v. This is very much differ-
ent from p{x) with no data y. For exampie. suppose
x is the height of all mabsir the U.S.A, The proha-
bility density function mykrhe have mean value 5 feet
11 inches and standard deviation of 3 inches. With
no measurements avzilabie, wee would estimate the
height of a given male as 3 fe 11 in. The RMS error

: would be 3 in. But given the measurement v made

10 0.2 in. RMS on the heSzht of that ale, the
probability distributon of < is very much altered.

To determine p (x}y), we «can make use of Baves’
Rule. Thhis is easily derived {rom the following state-
ment:

The probability that both: x and v jointly occur
is equal to the probability that y happens. times
the conditional probabilits- that y having hap-
pened, x will happen.

In symbols ' .. -

p(xandy) = p(y)p{xly)

Obviously, x and y can be interchanged on the

right:
plxandy) = p(x)p{yix)

By combining these two exjuations, Baves' Rule
resulis: .
P(}'lfmfx} (A-6)

piyd

On the left is the quantitw we desire to know.
On the right, p{x) is known from (A-3). The
probability functier of v cam easily be obtained.
The mezan value of ¢ is given by

Efy] = E{Mx -+ gf
= EIMx}+ E e
Efj] = Mam,

o({x|y)=



. PeIn=gE

The standard deviation squared of y is given by
Effly —m))=E[Mx+e¢—Mm)?) - =
=E[(M(x—m)+ )% (A7)

or i = M + o},

1
v Er; o1

where the last step depends on the assumption that
the ¢ and x arc uncorrelated. We now have the
mean value and standard deviation of the gaussian
variable y. This is all that is required to write p(y):
i - (F =Ygt

e e ' (A-8)

(y)=
U ARTs =

where o, is given by A-7). _ o )

In the same way, the conditional probabitity
density p[v]x] can be determined. If x is given
and known, say x = 100.6732 ohms. then the proba-
bility that y has some value, sav 101.0000 ohms, is
just the probability that ¢ = 101.0000 — 100.6732.
In other words. the probability density function
p I¥]x) is the probability density function p(e =y —
Mx). | has standard deviation e and mean value
Mx. Putting this in the form of {A-2},

h ]
- — M)t

.
e zo!

o1
plylx) = Yoo (A-9)
- —Puuing (A-3), (A-7), and (A-8) into Bayes
Rule gncs

—————————

. 0’; 6,

If the expression in brackets is multiplied out and
terims are collected, a perfect square results:

pixly)=

......l. (x - m,)* +
2 o

{y = Mx)* (y-— Mrnd’)]

-+ "!: M-?; y: + 2m,My + 3; n:)]

oy o; L5y \ .
sl e ‘-x - —(Ma,y + nm.)] -

2o}

1 o _ Me? ®
~3 v [ X (m: + pe {y = Mm )):l

S——n i,

Y2r ¢

In reducing {A-11}, usc is made of (A-7}. If the
factored expression (A-11) s substitnted into
(A-10), there results

v P ool Moi U\
= ‘csp[ 7 a;’a;’(& [m. o (y Mm,)]) ]

[ (t—m.)' (Y"‘MX)“ (y—MmJ

). oo

(A-11)

{A-12}




O

{A-12) is of the Jorm of the standard gaussian
probability distribution {A-2). Comparing (A-12)
with (A-2), the expected or mean value of p(x]y)
can pe determined, which corresponds to m_ in
{A-2). This &

O . - -

Mot
Efxly)=m — —(y — Mm,) (A-13)
N r

This is the optimum estimate of x, given the data y.
By using (A-7), {A-13) can be rewritten

% optimum = E [x]y] : =

.

The weighting coefficient b can be seen to be

Mol . . o

b = w————————
Mio: + oF

L3
e

which is the same as that used In the resistor ex-
ample. me e

- The expression {A-14) appears reasonable. m,
is the best estimate of x given no data. Mm, is the -

* reading we would get if x were indeed m,. Hence,

y =— Mm, represents a sort of error signal. b weights
that error signal to account for the relative pre-
cision of the measurernent data.

One can now sec how the term “maximum like-
lihood" arises. p(x}y} is the probability density
of x, given some data y: it might be tormed a “like-
lihood funciion.” Urder the definition of opti-
mality given zbove, the optimum estimate of x, for
any type of statistics or x and y, gaussian or not,
is E [x]y]. But, when gaussian seatistics are assumed,
p(x}y} takes on the familiar bell-shapea form, and
E[x]y], is at the peak vaiuc. or point of maximum
likelihood of that curve. For other types of sta-
tistics, this may or may not be the case. (A semantics
problem arises in the use of the terms “least squares™
and "maximum likelihrod.” These terms may not
have the same meaning 10 all peeple. They were

used in this paper, perhaps non-rigorously, to de-
note two estimation techniques. The important
thing in this tutorial treatment is to make under-
standable to the reader the difference in the two

_estimation techniques, rather than to present a

rigorous definition of terms.)

The mean square error in the estimate is given by

e} =E[(x — $)7]

. H che expression {A-14) is substituted for S and it

15 recalied that ¢ was assumed to be uncorrelated
with x, then the expression for ¢ reduces to

oor
Moi + o

(A-15)

This again is the expression used in the example.

One last remark concludes this abbreviated de.
velopment of the Kalman filier equations. We have
just seen the derivation of the equations for process-
ing a single data peint and making an optimum
estimate, This optimum estimate is the expected
or mean value of x, given the data y. If another

data point is obtained, then « is the new expected

value of x and will play the role of m, in the new
estimate, The variance of the estimate, given by
{A-15), will play the role of o7 in the new estimate.

Finally, if the system has dvrnamics, then the esti-
mated state of the system will not “stay put” be-
tween estimates. The old estimate and covariance
can be extrapolated to account for system dynainics,
using the transition matrix described in the second
example, or somne equivalent process. Thus, having
gone through both examples and the dertvation of
the bhasic equations for the maximum bkelihood
estitnate, the reader should Gné the extension of
these equations to their recursive form for dynamic
systems [airly obvious.



