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o
INTRODUCTION AND SUMMARY

Dr. R. E. Kalman introduced his concept of opti-
mum estimation in 1960. Since that time, his tech-
nique has proved to be a powerful and practical
tool. The approach is particularly well suited for
optimizing the performance of modern terrestrial
and space navigation systems.

Many people not directly involved in systems
analysis have heard about Kalman-filtering and
have expressed an interest in learning more about
it. Although attempts have been made to supply
such people with simple, intuitive explanations of
Kalman filtering, it is this writer's opinion that
none of these explanations has been completely suc-
cessful. Almost without exception, they have tended
to become enmeshed in the jargon and state-space
notation of the "cult." But matrix notation, regard-
less of how useful and efficient it may be, does not

- assist the uninitiated reader to understand the con-
cepts.

Surprisingly, in spite of all the obscure-looking
mathematics (the most impenetrable of which can
be found in Dr. Kalman's original paper), Kalman
filtering is a fairly direct and simple concept. The
full-blown matrix equations can be made intelligi-
ble by being presented in a way that appeals to the
intuition, and a statistical error analysis or actual
system performance data can be viewed with an
intuitive understanding of the results.

The present paper presents a straightforward ex-
planation of Knlman filtering that will be accessible
to virtually all readers. The most salient features

are explained by means of a very simple example,
entirely free from matrix notation and complicated
dynamics. A second illustrative example is taken
from the field of inertial navigation, since this is
one of the most fruitful areas of application for
Kalman estimation. This slightly more complicated
second example is used to describe more of the
concepts and terminology of Kalman filters (e.g.,
"state vector," and so forth}. At the same time, it
permits a closer look at the actual operations in-
volved in applying Kalman theory. Not all readers
will have the familiarity with matrix notation or
the patience to unravel evrry single equation in the
discussion of the second example. The writer feels,
however, that the gist of this discussion will be
grasped by the majority of those readers who are
analytically inclined. *

The main body of the paper concludes v/ith
qualitative comments concerning the practical ad-
vantages and disadvantages of the Kaiman tech-
nique, and the difficulties of applying it in actual
systems. Again, navigation systems are particularly
cited.

Finally, an appendix deF.nes a criterion for opti-
mum estimation and derives the optimum estima-
tion equations used In the examples. As is the case
with the main body of the paper, the appendix is
intended to be tutorial and to provide, for those
readers who can rccaiJ some of their probability
theory, a thumbnail derivation of the estimation
eouations.



o THE ELEMENTS OF KALMAN FILTERING

LEAST SQUARES AND MAXIMUM LIKELI-
HOOD ESTIMATION

In understanding the concept of Kalman filter-
ing, it is helpful to examine the differences between
two basic techniques of estimation. These are the
so-called "least squares" and the "maximum likeli-
hood" methods.* Toward this end, let us consider
the following example of an estimation problem:

Suppose that'we have a bucketful of nominally
100-ohrn resistors, accurate to 1 percent RMS.

*These terms involve some scmnntrc difficulties which are
briefly mentioned in the appendix.

Suppose, further, that from this bucket we select
a single resistor and that we want to estimate its
actual value. We shall use an ohmmeter with an
accuracy of 3 ohms RMS random error on each
reading. The error in each reading is statistically
uncorrelated with any other. The ohmmeter has
no systemic error or biases.

This simple example has most of the elements of
a complete Kalman filter, except that (1) it is a
one-dimensional problem and hence docs not re-
quire matrix notation, mnd (2) there are no dy-
namics in the problem. If the concepts in the
example are understood, t'heir extension to the gen-
eral case is not difficult.
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Figure 1. Comparison of Least Squares vs Maximum
Likelihood Estimations of the Value of a Resistor with
'1 Ohm RMS Tolerance, Using an Ohmmeter with 3
Ohms RMS Random Error

Maximum Likelihood Method and the Kalman
Concept

Least Squares Method

Least squares estimation involves fitting a curve
to the available data in such a way that the sum

'square of the residuals to the data points is mini-
mized. For our bucketful-of-resistors example, the
curve to be fitted to the ohmmeter readings is sim-
ply a constant. It is well known that the least
squares curve fit in this case is simply the average
of the ohmmeter readings. The RMS error in the
estimate is 3/V N, where N is the number of read-
ings. Until at least ore ohmmeter reading is ob-
tained, no curve cr.- ~ t and no estimate can be
made. In general, no >:ast squares cui-vc fit is pos-
sible until there are a: least as many equations as
there arc unknowns.

The RMS error vs the number of readings is
shown in the upper curve of Figure 1.

BASIC MAXIMUM LIKELIHOOD TECHNIQUE

Maximum likelihood, estimation introduces the
new factor of "weighting" into the estimation
process, in order to mai>= allowances for the accu-
racy of the measuring instrument (in our example,
an ohmmeter), as well as the accuracy of the thing
being measured (in our -example, a resistor). The
precision of the meter imay be known, possibly,
from calibration data; ttcit of the resistor may have
been learned from vendor's specifications, sampled
or 100-pcrcent-inspection data, or engineering judg-
ment based on experience or analysis of similar
resistors. We thus have a-vailable to us statistics con-
cerning both the qucntby being estimated and the
errors in measurement.

Now, suppose that, m our buckctful-of-resistors
example, a reading of P-5 ohms is indicated on the
face of the ohmmeter. In is extremely unlikely that
this quantity can actually be the exact value of the
resistance. But a reading of "95" for the nominally
"100-ohm" resistor conic: well be expected with this
meter, in view of its "-ohm ft MS error. In maxi-
mum likelihood cstirrtarion, mcicr readings arc



Q
weighted with a factor-which takes into account -
the relative quality of the meter, and obtains an
optimum estimate of the actual resistance.

' In explaining how the weighting factor "works,"
a, few definitions are necessary.

Let
x = value of the resistance for the particular

-I - resistor in question (the quantity to be esti-
mated)

e = error in ohmmeter reading
M = ohmmeter scale factor, i.e., output/input

(in the bucketful-of-resistors example,
- „ ' _ _ . M = l) __

yr= ohmmeter reading -•—-•.-__», ___
= MX - f t ~

»

The maximum likelihood weighting factor is
given by

where
crj = the variance or mean square deviation of

the resistance being estimated
«rj — mean square error in the ohmmeter reading

As described in more detail below, the raw ohm-
meter reading y is weighted by the factor b in order
to get an estimate of the true value of the resist-
ance x. While the derivation of this factor is rele-
gated to the appendix, one can see that b has at
least one desirable attribute: it takes into account
the relative accuracy of the ohmmeter measure-
ments. Assuming the scale factor of the ohmmeter
to be 1, if the ohmmeter were very accurate relative
to the precision of the resistors in the bucket (that
is, <rf much less than v\), then the weighting factor
would approach 1. In other words, we simply would
use the raw value of the ohmmeter reading in esti-
mating the resistance. If, on the other hand, the
resistors were very precise, say 0.1 percent from
nominal, and the ohmmeter were very inaccurate
and unreliable, the b would approach zero. In this
instance, we would reject the ohmmeter readings
and simply use the nominal value of the resistance
as our estimate of x.

But we have more to go on here than just intui-
tion. The value of b is derived on the bask that
it renders the estimate optimum. Because of the
random errors in the resistors and ohmmeter, "op-
timum" is taken in a statistical sense and is defined

as -the condition in which RMS -error -in the esti-
mate is minimized. T.it-r acy other statistically op-
timum policy, whether in estimation or at the
-blackjack tabler_the maximum likelihood method
does not yield a uniformly excellent result each and
every time. But b "plays tine odds" in such a way
that, on the average, the- best possible estimate is
obtained.

We should note that there is a fundamental dif-
ference between the two er-timation methods— least
squares and maximum Ilkeliihood— in the latter's in-
troduction of the concept of "weighting," which
takes into account trie accuracies of both the mea-
suring instrument and the'-object being measured.
Least squares, as" we hive-resn, works by the fitting
of data to a curve by mirrrmizmg the squared dif-
ference between the Apr* a.nd the curve fit— but a
good data fit does not necessarily imply a good esti-
mate. Maximum likelihood obtains an ^'optimum"
estimate by minimizing- die mean squared error in
the estimate— but with, baic data there can be a
poor fit.

The maximum likalihocd estimate (see the ap-
pendix for' a derivation) ss the -expected value of
the quantity beine estimzned, given the measure-
ment data. With no measurements, the expected
value 't>f the resistance of eur particular resistor is
nominal, or 100 ohms. We have no basis for stat-
ing that it is above or below nominal, and our best
estimate is, indeed, 100 ah-'ms. There is an error in
this estimate due to the d'.sviation of the resistor
from nominal ; the RMS value of the error in esti-
mation is the resistor's "m.-.ird" accuracy— 1 ohm.

Now suppose a reading 1:3 taken of the resistance
using the ohmmeter. This sreading will be weighted
by the factor

.

i +

~ 1* • 1* + 3=

= 0.1

- The estimate, based oc Erst reading yt, is given by

. x, = 100 + b(yr - 10T-)

where
x} = the estimate oT tlhe resistance x based on

one ohmrmcttr rr.ading. (The A symbol is
frequently reserve: cl for statistical estimates. )



o Suppose, for example, the reading on the ohm-
meter was 95 ohms. This value of resistance would
be highly unusual from a bucket of 1-percent RMS
fesbtors. It would represent a 50 deviation from
normal. However, the maximum likelihood esti-
mate for this particular situation would be

x, = 100 + 0.1(95- 100)

= 99.5 ohms

a result which is not at all unreasonable. Least
squares, on the other hand, would minimixe the
sum square of the residuals by estimating 95 ohms.
This gives a good data fit, but most probably is not
a very accurate estimate.

Naturally, there are some errors in maximum
likelihood estimates. The formula for the mean
square error in a maximum likelihood estimate is
given by

M t « t •>•trj + ol

' = (1 -bM)cr;

This equation is derived in the appendix, but it
can.be observed that at least in. one regard . the
formula seems reasonable. Assuming again that
M = 1,- and •supposing that we have a relatively
precise. measurement (that is. al is much less than
«r;), then the RMS error reduces to <r t, or the RMS
error in the estimate is simply the RMS error in
the -measurement. At the other extreme, suppose
the measurement was very inaccurate relative to the
tolerance. on the resistors; then the RMS error in
the estimate is <r,, the RMS tolerance of the re-
sistance. In this extreme case, we have rejected the
data (b = 0), and we are no smarter after the
measurement than we were before.

For this example, the mean square error in the
estimate is given by

= (1 -0.1)P

= 0.9 ohm'

aJ = 0.95 ohm RMSi
The RMS error has been reduced from 1 ohm with
no measurements, to 0.95 ohm af ter one measure-
ment. This is not much of an improvement, and
is a reflection of the relative inaccuracy of the ohm-
meter.

THE ITERATIVE NATURE OF THE KALMAN FILTER

-Now suppose that a second measurement is ob-
tained on the ohmmeter. It is at this point that the
second fundamental concept of the Kalman Filter—

•its recursive or iterative nature—rears its head.* It
'is this concept, brought forth by Dr. R. E. Kalman
in 1960, that has rendered maximum likelihood
estimation a feasible and practical technique for
use on small digital computers in real-time appli-
cation. As a result of our first reading, we have an
estimate of x, which we call x,, and can calculate
the mean square error in the estimate, or 0.9 ohm=.
-Now, when the second reading is made, we recog-
•nize similarity between this situation and the pre-
vious situation, when our estimate was a nominal
100 ohms with a mean square error of 1 ohm1'. We
proceed to weight the data as before, but realizing
that we have a better handle on the resistor than

' we did before. The new weighting factor is
M«r« '

'

b =

1 (0.9)
1(0.9)+3s

= 0.091

which is slightly less than the previous weighting
facior of OTI. This is because, as a result of the first
ohmmeter reading, we have a more accurate esti-
mate of x, and we will tend to weight the second
ohmmeter reading more lightly. Using this new
value of b. the estimate based on the two ohmmeter
readings is

x, = xt + b(y=-Mx1)

where b = 0.091. In this equation, (y» — MX,) is
the difference between the actual reading y: and the
value of the ideal reading ivhich would have been
obtained if x, had been perfect. It is very important
to note that the form of this equation is identical
to the form of the equation used to make the esti-
mate wkh the first reading. It is not necessary to
save the first reading y,; the only information re-

•This is not to imply thnt least squares cannot be made
iterat ive—ii can. In the example given here, 'a new least
squares curve fit can be dorivrd by updating the old
average to include the new data point:

I
— y-n

The result can be generalized.



quired to make the second optimum estimate is the
first optimum estimate, the computed mean square
error in the estimate tr* , and the mean square ohm-
meter error v\. Again,'a mean square error in the
estimate can be computed thus:

" = ( 1 -0.091) (0.9)

= 0.82 ohm=

or 0.90 ohm RMS.

It can be seen that a recursive or iterative proce-
dure is developing. Each time a reading is taken
a new weighting factor h is computed. It is applied
against the data to yield a new estimate x, and a
mean square error in the estimate is computed. The
latter quantity is necessary in computing b for the
next reading, but past data need never be saved.
The equations involved are summarized as shown
here.

1. Compute weighting coefficient:

Mo*
A

2. Use weighting coefficient to make new esti-
mate:

A A ' A
XB = xn-, -h bnfy, , — Mxn. t)

3. Update mean square error in estimation:

«"! =(1 ~~ b,,M)<7,irt * •• • r\

'« *n-i
To start this cyclic process, three quantities are

needed: 1) the expected value of the item to be
measured, prior to the taking of any readings;
2) the mean square deviation about nominal value
of the item; and 3) the mean square error in the
measuring instrument's indication.

The importance of the Kalman process' recursive
nature cannot he overcmphasixcd. Review of the
equations presented above shows that no past dr a
need ever be stored. Each estimation is identical
in procedure to all those which took place before
it, but each has a new weighting factor b computed
to take into account the sum total effect of ail the
previous estimates.

If our resistor example is carried out for succes-
sive measurements ami csti . uions and the RMS is
•imputed, the lesults point out (Fisjurc 1) that
maximum likelihood Kalm.in estimation is alwnvs

more accurate than the least squares method. Of
course, the bucketful-of-resistors example which we
•have cited here is a highly artificial one. It is in-
tended only to serve to bring out the basic concepts
of Kalman estimation, and no general quantitative
conclusions should be inferred from the information
presented in Figure 1.

Effect of Erroneous Statistics for Resistor Example

In the preceding discussion, it was noted that
three quantities had to be known before the cyclic
application of the Kalman filter equations could
be initiated. For the bucketfu!-of-resistors example,

1. The expected value of the resistance x prior
to the taking of any readings—namely, 100
ohms

2. The mean square deviation about nominal
—namely, 1 ohm3

3. The mean square error in the ohmmeter
readings—namely, 3 ohms:

In any actual situation, these three statistics are
only approximately known, and arc often, at best,
only estimates or educated guesses. Let us now take
a look at the consequences of using vague or errone-
ous statistics in the estimation process.

For simplicity, we will assume that only the sec-
ond of the three quantities listed above is in error;
that is, the RMS deviation of the resistors which
is assumed in the filter equations is 1 ohm, but the
actual RMS deviation of the resistors in the bucket
is some value other than 1 ohm. The effect on the
errors in estimation for various values of the true
RMS deviation will now be examined. .

For illustration, let us assume that the true RMS'
deviation of the resistors is 2 ohms. Using the
formula previously presented for b, the optimum
weighting coefficient is

b =
Mr«rj 4-

1s • 2--r3-

= 0.308

This weighting coefficient will not actually be ap-
plied, however. Under the erroneous assumption
th.it the bucket of n-Mviors tolerance is 1 percent
RMS. rather than the actual 2 percent RMS, it was



calculated in the previous section of this paper that
the coefficient to be used in the estimation process
was 0.100. This coefficient is too small and would
result in the placing of too little weight on the ohm-
meter reading. The RMS error in estimating the
resistance is computed to be 1.02, in contrast to
the error of 1.66 which would have resulted if the
optimum weighting of 0.308 had been used.

- To explore the situation more completely, Fig-
ure 2 was Generated. Based on the best available

O

data or engineering estimates, the resistor tolerance
was assumed by the filter to be 1 ohm RMS, and
the ohmmcter accuracy to be 3 ohms RMS. The
effect of the real world's difference from the arti-
ficial world assumed in the model is shown by the
various curves in Figure 2, plotted for the five con-
ditions that actual variation in the bucket of re-
sistors is 5/3, 1, 1/2, 2, and 3 ohms RMS. Two
general cases can be observed in Figure 2:

Case 1. In this case, thr resistors arc much more
out-of-tolcrance firelativc to the assumed
ohmmetcr accuracy) than assumed, and it
is possible for thy? Kaima;i procedure to
yield estimation errors worse than those
obtainable with oxeJinary least squares esti-
mation. In other xwords, the weighting co-
efficients were too small, and we should
have given more credence to the ohmmetcr
readings.

Cane 2. In this case, the actiual variation of the re-
sistors is smaller rihan assumed, and the
estimation errors arre still better than the
"optimum." Hovtevcr, by having been too
pessimistic ia the assumed tolerance on the
resistors, we too£. :too li t t le advantage of
their inherent precision. \Vc would have
been better off just to use the nominal
value of 100 oFazs.and to forget the ohm-
metcr readings- aJtmgcther.

I I
RMS ERROR IN
ESTIMATING RESISTANCE, OHMS

OHMMETER ACCURACY
ASSUMED ACCURACY OF RESISTORS
ACTUAL ACCURACY OF RESISTORS:

= 3 GHWS RMS RANDOM
= 1 CK.Y.1 RMS
1 OHM ;.=MS (CASE A)
1.5 DKM-tS RMS (CASE B)
2.0 OKITIS RMS (CASE C)
3.0 OHV.IS RMS (CASE D)
0.33 dH?.M RMS (CASE E)

NUM8B- C= 'OHMMETER READINGS
0.0

24

Figure S. Comparison of the Effects of Erroneoi's Statistics on Let?-- Scares
and Maximum Likciihooa Methods for Estimating Resislcr '•-'£:;ue
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The moral to our story: Real-world statistics and
dynamics will generally differ somewhat from the
conditions assumed in the Kahnan filter coefficients.
Before the Kahnan procedure is used in a particu-
lar application, a sensitivity analysis of the sort
described above should be made to assess the risks
involved in' the event the real world should happen
to differ appreciably from that assumed in the
model. (If one is concerned about the possibility
that the real world has statistics other than those
assumed, one might be tempted to consider "bias-
ing'' the statistics to be employed in the filter,
thereby hedging against .this possibility. To accom-
plish this biasing, it would be necessary to alter
a priori statistics in the proper direction to reduce
the risk tha t would be involved if the real world
were different from the model. However, it can be
shown that tricks of this sort are pretty futile. The
l>est jwlicy is lo use the expected values of the cr's,
based on the available data, and to let it go at that.)

APPLICATION OF KALMAN FILTER
TO DYNAMIC SYSTEMS

The l>uckct-of-iest«ors example illustrates some
salient f ea tu re s of the Kahnan procedure, but in-
cludes no tivnamics. Also, it is a one-dimensional

problem. The following example illustrates appli-
cation of the Kalman technique to a dynamic,
multi-dimensional system.

The example under consideration involves a sim-
plified incrtial navigation system.* The navigation
system is described by the loop shown in Figxtre 3
and is subject to only three error sources: initial
position error, initial velocity error, and initial tilt.
\Ve will assume that the system has available ex-
ternal position fixes every 10.5 minutes (or every
one-eighth Schuler period^, and these position fixes
can be used to update system accuracy. The total
assumed RMS errors acting on the system are thus:

Error Magnitude

Sx(OK initial 1.000 ft RMS'
position error

6 ft/sec RMSSx(0). initial
velocity error

^ r(0r. initial tilt

r, position-fix
error

C.I inrRMS

1,000 ft RMS

All uncorre-
latt'l

*Thc reader who is unfamiliar with inertial navigation
ran ignore the physical in te rp re ta t ion of this example,
yet benefit just as well. Figure 3 ean be ta»cn at fnre
value.
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Figure 4- Comparison of Straight Position Resets with Kalman Resets

Our example will consider two cases. Case 1 in-
volves simply correcting the incrtial navigator posi-
tion error with the external position-fix data.
Physically, this might just mean adjusting the posi-
tion display to agree with the externally indicated
position. The velocity and t i l t errors arc unafTcctcd
by this procedure, and will continue to propagate
away,- unabated.

Detailed analysis of this case would do nothing
to promote better understanding of Kalman and is.
hence, omitted here. Position error as a function of
time is presented in Figure 4 to provide a basis for
comparison with the Kalman case, which is also
shown in the same figure.

Case 2, employing the Kalman approach, will be
treated in some detai l . In order to deal with the
dynamic, mult i-dimensional aspects of the problem,
the concepts of "state vector," "transition matrix."
"measurement matrix," and "crvariancc matrix"
will he introduced. It is easily verified tha t t l ic |x>xi-

tion, velocity, and tilt errors as functions of time
are given by

s

111
Sx(t)=Sx(0) + — Sx(0>-

Sx(0 = . (2)

in which s = sin wt and c = cos wt, and «•> =
This can be written in matrix notation as

5x(t)

8x( t )

Ry a change of notation, (3) can be written

x( t )= 4 > ( t ) x ( 0 ) (4)

where the symbols of ( - } ) denote the rorn-Npondini;
matrices in (3 ) .T I>< ' quan t i ty A (l I is calli-d the sysirm

"l i
0 c

." 1C

-R.fi - c)

-RO.S
c

Sx(01

8x(0)

[<',(0^_



"state vector." It is nothing more nor less than a
convenient notational form. Its use results in neat
equations such as (4) , which aid and assist com-
prehension, and avoids messy equations such as
(2), or. worse yet. complicated equations involving
double and triple summations. Tho dynamics of the
system arc represented by « l > ( t ) . which is called
the "transition matrix." As will br seen. « l > ( t l is
used to a considerable extent in the Kalman filter.

In the resistor example, the ohrnmctcr measure-
ment y was related to the resistance x by the re-
lation

y = MX + t (5)

where M was the meter scale factor (M = 1 in the
resistor example). In multi-dimensional problems,
it"is convenient to have a similar matrix equation,
in which the measurement is related to the system
state. In the present example._ihc measurement y
is a position fix. It is equal to the actual position
error crx plus a position fix error t:

y = Sx -i- r (6)

Recall from above that

Sx'

Sx

"We can obtain the relationship (6) in the format
of (5) by writing

"'Sx'

matrix called the "covariance matrix." For our ex-
ample, it is made up thus:

y=(100) Sx (7)

One can readily see that (7) is identical with (6).

By defining
M = ( 1 0 0 1 (81

equation (7) can be written in matrix notation:

y = MX + t

M is called the "measurement matrix." It simply
denotes the part or the component of the state
vector x that is Ix-ing measured.

In the biicketfnl-of-rcsistors example, it was seen
that a fundamental part of the filter was the mean
square error in the value of the resistors, namely
( ohm i-'. Similarly, in m . . i-dimenMrmal dynamic
systems, such a q u a n t i t y is iri|uitvd to compute the
optimum weight ing coefficients. This quant i ty is a

P, =

Mean square
position error

Cross-
correlation
between
position and
velocity errors

Cross-
correlation
between
position and
tilt errors

Cross-
correlation
between
position and
velocity errors

Mean square
velocity error

Cross-
correlation
between
velocity and
tilt errors

Cross-
correlation
between
position and
tilt errors

Cross-
correlation
between
velocity and
tilt errors

Mean square
til t error

—

Initially, it was assumed that the mean-square
position, velocity, and tilt errors were (1.000 f t ) 2 ,
(6 ft/sccl:, and (0.1 inrj2, respectively—all uncor-
related. Hence, the initial value of Px is given by

"(1000)1 0 0

P,= 0 (6)* 0 (9j"~"

0 0 (0.0001)-_

As with the resistor example, the value of Px must
be known ahead of time. It can be determined from
physical tests on similar systems, by error analysis,
or, if need be, by best engineering judgment.

Now the covariance matrix P, is not constant
with time. The initial velocity error will start propa-
gating into position and tilt error, etc., according
to equations (2) or (31. It can easily be shown
that the covariance matrix at sonic time t can be
determined from P»(0) by

P,(t)=*(t)P,(0)*(t)T (10)

4>(tl was discussed above and defined in equations
(31 and (41. (The symbol < I > ( t ) T means "the trans-
pose of < l > ( t l ? ' and simply denotes the exchange
of the rows and io'uunns of < I > ( t l . Transposition
appears frequently in error anaiysis equations in
matrix form, but can be ignored as far as under-
standing the gist of the equations.) Equation (10) ,
while not derived here, certainly appears to be rea-
sonable. In other words, if «I> propagates x, it is
reasonable lo expect t l i u t <I> "squaied" would propa-
gate the covariance of x. Consideiation of a simple
scalar example would il lustrate this.



It must be assumed that, in addition to the iner-
tial navigation hardware, there is a digital com-
puter to perform the calculations described below.
The computer is initialixed at the initial value of
P,. At t = 10.5 sec, the first checkpoint is obtained.
.At this time, the computer will use the checkpoint
data to mnke an estimate of the position, velocity,
and tilt errors ir. the system. In making the esti-
mate, the computer wili consider the relative ac-

• curacy of the position fix data and the inertial
navigation system data. To do this, the computer

• requires a current measure of the accuracy of the
inertial navigation system at t = 10.5—namely, the
covariance. The computer obtains this by extrapo-
lating Px(0), using equation (10) or its equivalent.
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The diagonal elements are the mean square posi-
tion, velocity, and tilt errors, respectively. The ofT-
diagonal elements arc cross-correlations between
these same three quantities.

• It is instructive to examine the detailed expres-
sions for a couple of these elements, just to sec that
equation (10) gives reasonable results. For exam-
ple, the upper left-hand clement of ( 1 1 ) is mean
square position error and is given by

Mean square position error at t = 10.5:

= (1000)s + f - ) (6)S + RSM -c) = (10-r

= 0.129« ft=

= 3.59D ft RMS



o
By examining this expression, we can sec the initial
position error; the effects of the initial velocity
error, which propagates into position as a sine s/«;
and of the initial t i l t error, which propagates into
position as a one minus cosine, — R ( l — c). Had
the initial conditions been correlated, as is often the
case, the expression would have been more compli-
cated. It would have had terms involving the cross-
correlations of the initial errors, indicating that the
effects of these errors tended to add or cancel.

The element in the top row, second column of
(11) is the cross-correlation between position error
and velocity error. When written out in detail it is

Cross-correlation between velocity and position

errors at t = 10.5:

In equation (13), P* rs the covariance of x, and
is analogous to 01 in (12',. M is the measurement
matrix, and is analogous to the scale factor M
in (12). Pt is the cevardance of the position fix
error, and is analogous to <rj in equation (12). The
superscript "' denotes marrix inversion, and is anal-
ogous to division (and rrs this example it will be
seen that it is division). As remarked above, the
transposition superscript T can be ignored as far
as understanding the gist of these equations is con-
cerned. After taking- inco account the idiosyncrasies
in notation, it can be seer, that (13) is very similar
in appearance to (12). Bat, more importantly, (13)
is identical in concept tv (12). All the discussion
regarding b in the resistor example applies to this
example. If one understands the gist of (12) , then
(13) is no longer a nsyscerious, unintelligible mass
of matrices.

_s_
•I

= 0.154W ft ft/sec

The first term is due to the initial velocity error,
which propagates as a sine into position s/u>, but
at the same time diminishes as a cosine c. The sec-
ond term is due to the initial tilt error, which
propagates simultaneously into position and velocity
error as — R ( l — c) and — Rws, respectively, and
hence contributes the cross-correlation as shown.
Again, if the initial errors had been correlated, the
expressions would have been more complicated, but
the idea is the same.

In the resistor example, the data y was weighted
by a coefficient b given by

Equation (13) win be given a more detailed ex-
amination. In doing so,, it will be convenient to
write PI and P* in tenns of their elements.

Using the definition car M and this notation for
P, and Pt. equation (13) can be written out

p,=
•Prr Pi,

P. = [P«I

b = Ma;
(12)

The same thing will be done here, except that the
coefficient is a matrix given by

b = P, (13)

where the numerical values of the elements of Pj
were computed in (11), and Ptt is simply
(1,000 ft)2 .

Using the dcfmhjon cf M and this notation for
P. and Pt, equation (13) can be written out:



P.)'1

'Pu P.: P»'

P» P« PM

_P,i P« PM.

' 11

0

_ o j

'[I 0 0] P p p "it .TH *»

P P PII «S! *2.1

P P P» S I •'3! •» 3.1

[P..J

+ P..]'1

(14)

r p" i
Pn + P«

Pr.

Pn + P«

PM

LP.l + P.cJ

= o.ir-2

Matrix inversion in this case involved only scalars
Pn = 0.129V* and Ptc = 0.01X\ Hence, inversion
was in reality division by 0.139VS.

Before discussing a little x>f the significance of
(14), let us go through the mechanics of making
the Kalman estimate. Suppose the position fix indi-
cated a position error of —4,000 ft. Then, the com-
puter makes an estimate of position, velocity, and
tilt error

A ux = by

•Q.93

(-4000)

'-3710ft '

-4.4 ft/sec
/

-0.154 mr

In the resistor example, it was necessary to ac-
count for the nominal value, or mean value before
a measurement was made, of 100 ohms. In this
example, the me_an errors are xcro (although, of
course, the mean square errors arc not rero).

The first clement of b is given by

P,,
b,=

in which P,, is the mean square position error at
t = 10.5 and Ptc is the mean square "position fix
measurement error. Hence b, is identical in form
and meaning to the weighting coefficient in the
resistor example. Tins reinforces the statement that
the matrix equation (13) is identical in concept
to (12) . All the discussion of the resistor example
carries over completely here and does not need to
be repeated.

The second element of b is given by

(15)

Pi i + P.

and involves the cross-correlation P2, between posi-
tion error and velocity error; b; is used to weight
position error to yield an estimate of velocity error.

If the reader is still somewhat confused as to how
the Kalman filter can simultaneously estimate three
quantities—namely, position, velocity and tilt-from
a noisy measurement of only one quanti ty, perhaps
the following discussion will help.

Suppose that in a certain area annual rainfall ,
the height of corn, and f.tnr.er's annual income arc
observed to bi- related; they all tend to increase or
decrease together. Then, by obsvrving only one of
them, it is clearly possible to get an estimate nf the



3 other two, using empirically derived relationships.
If there were only one dominant causal factor, say
annual rainfall, then this estimate might be a pretty
good one. If other independent random factors
existed, such as market conditions, then the esti-
mate might be less accurate.

In an analogous manner, the position, velocity,
and tilt errors can be simultaneously estimated from
a single data point. Instead of an empirical rela-
tionship ouch as the one mentioned in the paragraph
above, the proportionality factor b is computed
using the covariance. The factor b-, has the units
of, and can roughly bo interpreted as, "velocity error
per unit observed position error."

After making the optimum estimate of position,
velocity, and tilt, the mean square errors will be
reduced. In the resistor example, the error in esti-
mating the resistance was given by

In the multi-dimensional case, the corresponding
formula is

P,=(I— bM)P,

Expanding this equation in terms of its elements

rri o on r pn -
0 1 0 Pu + P"

p«LLo o ij Pn + p..
Ps,

_p,l + Pcc_
P "1 r

i " n n1 P,, + Pcc ° °
>l . 1 nP j- p l u

I M i rtt L

... . - ' . . . . n 1
L Pn + P« ° ' J

f P"P" r
Pn -f Pec ^

r P"P" r
* l s P.t + P.t '"
P . . .,'" .v . p

. * " PM + P,. ' ;'

(i o on TPIS P« p,q
P» P» P»

?il

Pit PII PU

P.i PM PH

.Pn PJS PM_ ,

P»Pn P»P,i

PM + Pec ?U PK + P,
132 B> t>*.: I'tsrjs

P,, + Pc« '" P,t + P«
p p p:ft-r-w JY,

P , , + ' P i « '*' Pu + Pc

Tho diagonal rlf incnts of equation (1C} arc the
mean square errors in estimating position, velocity

15



f''~*\
\j^ and tilt The numerical values of the P's can be

obtained from equation (11 ) . Using these- values,
the following table can be constructed.

Quantity RMS Error before RMS Error after
Optimum
Estimate

Position
Velocity
Tilt

3,600 ft
4.59 ft/sec
0.184mr

Optimum
Estimate

960ft
1.97 ft/sec
O.lHmr

There is a considerable improvement not only
in position, which was estimated slightly more accu-
rately than the 1,000 ft RMS position fix, but also
in velocity and tilt. This is because there is strong
correlation between position error and velocity
error, and between position error and tilt error;
that is, P,.j and PU are large. A' more detailed
analysis reveals that initial velocity error is the
dominant contributor to the RMS position, velocity,
and tilt errors existing at t = 10.5.

Error Source

Initial position,
1000 ft RMS

Initial velocity,
6 ft RMS

Initial tilt, 0.1 mr
RSS Totals

Effect on Errors at t — 10.5
Position Velocity Tilt

1000 ft 0 ft/sec 0 mr

3400
600

4.23
1.73

3600 4.59

The computer, based on the covariance matrix it
• has updated, knows that the velocity and tilt errors
in the system are both roughly proportional to the
observed position error and can make a relatively
good estimate of them.

After the computer makes the optimum estimate,
it can update the covariance as indicated in equa-
tion (16). It is now ready to extrapolate the covari-
ance as in equation ( 1 1 ) , until the next position fix
is obtained. Again, as in the resistor example, a
cyclic or recursive process can be seen to evolve.

The question arises—what should be done with
the optimum estimates? The computer has two op-
tions. One is to do the obvious: Adjust the position
and velocity registers and physically "torque out"
the estimated tilt. The other option is to leave the
Schulcr loop alone, ond to compute corrections to
the inertia! navigation system outputs as time pro-
gresses. Rut, this involves extrapolating the correc-
tions using equation ( 3 ) , and is an ax-oidablc

computational complexity. By choosing the former
option, the mean value of the system errors is always
zero, and the Kalman equations are simplified.
They are summarized as follows:

Initialize Pi(0) and P£ based on a priori
knowledge of system characteristics.

Extrapolate covariance.
P , ( t ) = * ( t ) P J I ( 0 ) ' I > ( t ) T

_L
Compute optimum weighting coefficient matrix.

b = PIM
T(MP,MT + Pt}-1

±
Obtain external data y and make optimum

estimate of system state.

£ = by

i.
Apply corrections to system.

Adjust PI to account for optimum estimate.

Before leaving this example, one final point will
be made to compare, once again, the maximum
likelihood estimation with art ordinary least squares
curve fit. Suppose that, shortly after t = 0, two
position fixes are obtained with random errors of
1,000 ft RMS. Clearly, if we attempt to make a
least squares curve fit of an 84-mimite sine and
cosine to these closely spaced, relatively inaccurate
data points, very large errors would result. But. the
Kalman filter recognises this problem automati-
cally. When the covariance matrix is updated, the
cross-correlation between position and velocity is
found to be very small:

P,- =

This is due to the sin «>t and (1 — cos nt) factors,
which for short interval t arc approximately 7cro.
The resulting b matrix is

Pit +
P,:

P,, +

P.:.

P.l +



With the b matrix so computed, the computer
will make a position correction equal to l/3 the
observed position fix data, and will make almost
zero corrections to ti l t and velocity. The RMS posi-
tion error after this procedure will be reduced by
l/\~2^ and RMS velocity and t i l t eirors will be
unaffected.

In general, when properly mechanized, the
Kalman filter will not introduce into a system errors
which are larger—statistically speaking—than the
errors which existed prior to making the estimate.
This is true regardless of how poor the reference
data -are. -~Jt -is dcfinitely-not true of least squares,

--as~was illustrated in the buckctful-of-resistors ex-
ample.

SOME SALIENT GENERAL FACTS
_REGARDING KALMAN FILTERS

"1. Kalman techniques-apply in a practical sense
principally to linear systems.

2. The Kalman filter requires use of the covariance
_ matrix with calculations. In_effect then, the com-

frror analysis. In fact, this error analysis ca'pa-
. biltty uses somewhat sophisticated techniques

.". Tr.e Kairr.cr. r . :cr accepts various external data
sr~ makes corrections to the system "state,"
which in the case of inertia! navigation systems
might include position, velocity, tilt, gyro bias,
azimuth error, etc. This makes it. in effect, an
alinement process. In fact, there is no essential

c';.'7crcr-cc bccwcn the rumganbn anc/nu'nemcnt
rr,ecr.2n:/at:ons when using a Kalman filter, and
t--.e various modes such as "coarse aline," "fine
£ :r.c,'T and "navigate" arc all done away with
£J :ar as the filter is concerned.

4, V, c saw in the example above that the measure-
ment jnatrix was given as

M v = ( l 0 0)

when the ex te rna l data was a position fix. In
case reference velocity had been available, the
r:2'.r:\ would have been

. . M =(0 1 0)

variables. All the equations remain otherwise
the same.

5. The Kalman filter can make use of human
judgment. For example, we saw that the com-
puter made use of the mean square position-fix
error in computing the filter coefficients. Suppose
that an airplane pilot were involved in the
position-fix observation. It is possible he would
have much higher confidence in some fixes than
in others, say with a sighting of the airfield tower
from 500 feet, compared to a landmark observa-
tion from 15,000 feet. If the control panel were
so arranged, it would be possible for him to indi-
cate a rough confidence level in the fix when he
entered the data into the computer. The com-
puter might use a preset of table of RMS fix
errors, corresponding to whether the pilot indi-
cated the fix was "excellent," "good," or "fair."

6. Perhaps the biggest computational problem in-
volves updating the covariance matrix. In the

• example, it was stated that it is updated by the
formula

;-. r,::-.er words, by s imp ly using the appropriate
.-. rr.a-.r.-x t h e computer can accept any form
c e\ :vr:^! c i a t a t h a t arc related to the state

This would be a relatively simple calculation if
* were available. But, «£ is hard to obtain when
the system is tijne-varyjne, as is the case with an

aircraft. TTie direct method is to numerically
integrate the dynamical equations describing the
system, assuming unity initial conditions. If the
system is of nth order, then this involves inte-
grating n simultaneous differential equations.
This uses up much computer time and space,

atld $M em (6 (L po^Ky c/rouna/i/
errors.

Another approach is to update the covariance
by steps, by repented application of the equation
above. If the time increment is small enough,
then an approximate expression for the transi-
tion matrix can be obtained analytically by as-
suming the parameters are constant in that
interval. For a specific example, assume the sys-
tem is an aircraft incrtial navigation system.
Then, if the time interval is short enough, we
can assume that all the parameters, such as lat i-
tude, are constant, and the transit ion matrix
takes on a form similar to equation (3) in the
example. (The aircraft 's maneuvers can be ac-
counted for in a short time interval bv accumu-
lating velocity pulses from the accelcromcter and



'~A coupling azimuth error into velocity error
^~*^ through the velocity increment.) Rut this pro-

cedure replaces the problems encountered above
with the problems of many matrix multiplica-
tions, again using up computer time and space,
and generating the distinct possibility of round-
oft errors. If the round-ofT errors are large
enough, some of the element-; in the covari-
ance could possibly be of the wrong sign, which
might create an unstable loop.

There are other approaches to updating the
transition matrix. But. whatever the technique,
updating the covariancc matrix remains a diffi-
cult problem at best.

7. Another problem of appreciable magnitude is
that of properly modeling the system. This prob-
lem takes on several aspects. These are discussed
below.

a. There is a tradeoff between complexity of the
system model versus computer complexity
versus accuracy. As a specific example, con-
sider the dynamics of an inertia! navigation
system. It is possible to derive, an extremely

r 'g complex mode! of such a system, considering
only the linear aspects. One could include the
Schuler loop, 24-hour effects, various instru-
ment parameters and sensitivities, including
instrument biases, scale factors, rnisalincments,
random effects, trends, g and g- sensitivities,
various servo phenomena, random driving
functions such as gravity anomalies, phase of
the moon, complex modeling of the reference
data, etc., etc. Clearly, it is impractical to in-
clude this model in the on-board computer.
It is necessary then to make tradeoff studies
to get the right balance between improvement
in system accuracy and available computer
capability.

b. Another difficult problem arises when the ex-
act model of the system is not even well
known.

An example might occur in the determina-
tion of the orbit of a satel l i te . Suppose the
computer th inks the only errors arc uncer-
tainties in in i t i a l position and velocity of the
satellite. After ob ta in ing suf f i c ien t external

•—^ data, the computer thin ' it lias trimmed up
the orbit ii la Kahnan, and the b coefficients

approach zero. Bu t . ::' :-.?•; z—_ _ - • - . : - -
and unmodeicc force: s_ : - a.- s-r i- --;::_-?
the actual orbi; of tr.e sa:e ^ . -;- - ::
diverge from the corr-^tez :•:.: T- ; ; - : ; • •
nal data will now be re;e::ez a..-; .--. c.-r.:
will go uncorrected

By judicious modeiir.- te:r.r.::_ei s_:-
problems can be reduced or e!:rr.:r.a:ec.

c. The problem of erroneous sta:is::cj w;is dis-
cussed in connection with the bjcke: of re-
sistors example. There, it was seen that if the
resistors were much -worse than assumed in
the model, poor estimates were achieved. If
the ensemble of systems is the same as that
assumed in the model, then the Kalman pro-
cedure will obtain optimum performance out
of this ensemble. But the Kalman filter can-
not make good systems out of bad ones.

8. Implementation of the Kalman filter can im-
pose—depending on the application—heavy de-
mands on the computer. The practical engineer
will explore various schemes which can provide
the essential benefits of the Kalman approach,
but which will provide relief with regard to com-
puter time and space. Besides the modeling ap-
proaches discussed above, other compromises
with the full-blown theory should be explored:

a. A body of theory has been developed regard-
ing what are called "sub-optimal filters."
These are Kalman-typc filters, except that
certain portions of the system state are as-
sumed to be uncoupled from the remainder.
For example, it might he assumed that the x
and y channels of an inertia! navigation sys-
tem arc uncoupled: this would ignore 24-hour
and azimuth channel effects. It turns out that
this type of approach yields two or more
Kaliuan-type problems for the computer to
solve, except that the sum of the parts is less
than the whole. In other words, it is easier for
a computer to den! simultaneously with two
third-order probk.ns than with just one sixth-
order problem.

b. When data come in .it a high rate, it becomes
impossible for the computer to process the
data with the complete Kalunn equat ions.
One approach is to prcfiltcr the data by
analog or digital means and to have the com-
puter dca! wi th the prcnlicrcd data at a much



^ slower rate. Another approach is to have the
:t -Kalman filter ignore the prefiltcrcc! data alto-
•• gethcr, and to ha\-c the high-speed data enter
...rlbe system by some more conventional means,
; .and the slower-speed data processed in the

Kalman manner.

<.~In general, when the data vector y consists
of n components, theory says that the Kalman
filter has to invert an n X n matrix to derive

- the filter matrix b. But matrix inversion often
.. b a very difficult process to do in real time,

.even for small n, such as 2 or 3. One device
to avoid this problem, when the input data
rate is low, is to consider the components of

" ^ - -the data vector to be coming in singly. For
:- - example, suppose the data consist of two com-
.̂ ponents, latitude and longitude. The com-

puter could be instructed to process just the

latitude data first, and it would liave only to
"invert" a 1 X 1 matrix which, translated.
means it only has to perform a simple divi-

• "sion. Having processed the latitude data, it
can accordingly adjust the covariance matrix
to account for them, and then process longi-
tude.

d. When the mission is known beforehand, con-
sideration should be given to precalculating
the b coefficients. This can yield considerable
computer time and, perhaps, space savings.

In short, the full-blown, doctrinaire ap-
proach to Kalman could well lead to imprac-
tical demands on the computer. An inventive,
shortcut, hybrid approach might yield the
benefits of Kalman without overloading the
computer.



APPENDIX

The purpose of this appendix is to provide an
abbreviated tutorial derivation of the equations ap-
pearing in the two examples cited in the main body
of the paper. This, in turn, should reveal the prin-
ciples underlying maximum likelihood estimation.

Inasmuch as the purpose of the paper is tutorial,
and since general derivations are available in nu-
merous other places, genera! equations will not be
derived. Some difficulties in the manipulation of
matrices is avoided in this way and, at the same
time, little is sacrificed with respect to understand-
ing the concepts. To assist the reader whose knowl-
edge of probability notation may be hazy, the
derivation given below makes use of specific refer-
ences to the bucketful-of-resistors example.

We start out by denning a criterion for opti-
mality. Given some quantity x (e.g., unknown value
of a certain resistor) which we want to estimate,
the symbol x is assigned to denote this estimate.
Suppose we have a measurement y (e.g., an ohm-
meter reading). The error in estimation is then
given by x — x. This error has associated with it
some loss which we arbitrarily define as

Q = ( x - x ) s K *
where

Q = loss (e.g., in units of dollars) associ-
. ated with the error in estimating the

value of the first resistor

(x — x)* = error squared in estimating the re-
sistance

K* = positive constant (e.g., in units of
dollars/o' ^s;) which converts
squared estimation rrror into units
of loss

Now, we would like somehow to minimize Q,
given the measurement y. But there is clearly no
way to guarantee this, because of the random na-
ture of the process; Q has a minimum value of 0,
and to guarantee this would imply we could guar-
antee a perfect estimate of x. We must resort to a
statistical definition of optimum. If the statistics of
x and y are known, then the expected or mean value
of Q can be determined, x is defined as being opti-
mum if, given the data y, the expected value of Q
is minimized. Written in symbols:

Choose x so that

Q = E [(x — x)2 K*|yj is minimized

(The symbol E [A I B] denotes the expected value
of A, given B.) This is our criterion for optimum
estimation.

We can determine the minimum expected value
of the loss by setting its derivative with respect to
A nx = 0:

= 2K'E[xly]-2K'E[.x|y]

The symbol E[x|y] denotes "the expected value of
our estimate, given the data y." But, we are free
to choose x in any manner we choose, and the
expected value of \ is simply whatever we choose
it to be. In other words,

E[x|y] = x

Putting this into the expression for the derivative
and setting the result equal to zero yields the follow-
ing expression for the oprimum estimate

x optimum = E [x | y] (A-l)



This is a very general and important result. To re-
trace the steps above:

1. Given a weighted, squared estimation error
type of loss function

2. Given a priori statisics on the quanti ty being
estimated x and the measurement y

3. Given some measurement data y
4. Then the expected value of x given these data

can be computed (just how will be explained
below)

5.; The optimum estimate x is equal to this ex-
pected value.

It can be noted that the weighting constant K:

drops out and docs not enter into the determination
of XV This is perhaps in tu i t ive ly obvious for this
simple scalar case. It is also true for the multi-
dimensional case in which K- is replaced by a
weighting matrix.

Now suppose the quantities x and y are gaussian.
If this is the case, then we can obtain a special
form for x. This form is the same as was shown in
the examples.

Recall that the general form of a gaussian proba-
bility; .density function is as shown below:

-e'^lJT (A-2)

where

r = gaussian-distributcd random variable

crr — standard deviation about the mean

mr = mean value of r

Then let the probability density function of x
. be as follows:

' 1 (»-»',)»
PM=^2T7 e ~ "•''• (A'3)

where

0* = standard dcvia'tion of x (= 1 ohm in ex-
ample)

m, = mean value of x (= 100 ohms in ex-
ample)

Let

'here

and

y = MX + t (A-4)

M = scale factor ( = 1 in example)

t ~ measurement error

Assume that t is gaussian with zero mean and
independent of x:

! -_flP(0 = (A-5)

where oc — standard deviation of t (= 3 in ex-
ample).

Now, according to the general formula ( A - l ) ,
we require an expression fcr E[x|y]. This can be
obained if an expression for'the conditional proba-
bility density function p(x|y> can be obtained—by
averaging p(x |y) , Efxjyl results. But, what is
p(x|y) ? In words, it is the probability density func-
tion of x, given the data. y. Tihis is very nuich differ-
ent from p (x) with no data y. For example, suppose
x is the height of all mair» in .the U.S.A. The proba-
bility density function mkrhr. ihave mean value 5 feet
11 inches and standard deviation of 3 inches. With
no measurements available, tve would estimate the
height of a given male as 5 ft ! 1 in. The RMS error
would be 3 in. Rut given the- measurement y made
to 0.2 in. RMS on the height of that male, the
probability distribution of x is very much altered.

To determine p ( x j y ) , we^can make use of Baycs"
Rule. This is easily derived from the following state-
ment :

The probability that botn; x and y jointly occur
is equal to the probability- that y happens, times
the conditional probabilir.- that y having hap-
pened, x will happen.

In symbols t

p(xandy)= p (y )p 'x r fy )

Obviously, x and y can be; interchanged on the
right:

p (xandy) = p(x}p(y.'Sx)

By combining these two equations, Baycs' Rule
result1!:

. , * p(y|*)p(x)
p(x|y)= P(y))

(A-6)

On the left is the quantity we desire to know.
On the right, p (x) is known from (A-3). The
probability function of y can- easily be obtained.
The mean value of y is given by

= E : MX]

- Mm,

((]
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The standard deviation squared of y is given by

E[(y - m,)-1] = E[Mx + f - Mmjz] : =

= E [ ( M ( x - n u ) - f O * ] (A-7)
or c; = M;er- 4- oi.

where the last step depends on the assumption that
the t and x arc uncorrclated. We now have the
mean value and standard deviation of the gaussian
variable y. This is all that is required to write p (y ) :

«T-Mm.)«
e" :e (A-8)

where a, is given by A-7).

In the same way. the conditional probability
density p[y]x] can be determined. If x is given
and- known, say x = 100.6732 ohms, then the proba-
bility that y has some value, say 101.0000 ohms, is
just the probability that t = 101.0000 - 100.6732.
In other words, the probability density function
P [>' 1 x! 's ̂ lc probability density function p (t = y —
MX). It has standard deviation ce and mean value
MX. Putting this in the form of (A-2),

ro

• ' - ~- .. - - Putting (A-3), (A-7), and (A-8) into Bayes'
Rule gives

, , . 1 *r \ 1 / ( x - m , ) 8 ( y - M x ) » (y-Mm.)s\-|
p(x y) = — — - exp - — ( - : - 4- - ;— r- - — - - - I .. (A-10)

. V^ ai"e L 2 \ ^ - c~t °i Jj

If the expression in brackets is multiplied out and
terms are collected, a perfect square results:

,
"*"

1 fU'ot al \~]
— [ - — y + 2m,My + — - m;
v>\ •'<_ "'- /J \_ __ (A-ll)

—-?-: x -- :(Meriy + erjm,)
2 aic \_ a; J

1 o* T / , M«r; NT
•= ~r-:\ x - ( m, + —r- (y - Mm,) )
2 a;a; |_ \ o; /J

In reducing (A-l 1 ) , use is made of (A-7) . If the
factored expression (A- 11) is substituted into

\ (A-10), there results

2



(A-12) is of the form of the standard gaussian
probability distribution (A-2). Comparing (A-12)
with (A-2), the expected or mean value of p(x|y)
can be determined, which corresponds to m in
(A-2). This is

£[x|y] = m.
Me

This is the optimum estimate of x, given the data y.
By using (A-7), (A-13) can be rewritten

Si optimum = E[x|y] ~rr

used in this paper, perhaps non-rigorously, to de-
note two estimation techniques. The important
thing in this tutorial treatment is to make under-
standable to the reader the difference in the two
estimation techniques, rather than to present a
rigorous definition of terms.)

The mean square error in the estimate is given by

«r f=E[(x-x) ' J

II the expression (A-14) is substituted for x and it
"is recalled that t was assumed to be uncorrelated
with x, then the expression for t reduces to

(A-H)

The weighting coefficient b can be seen to be

Me*

M!ci + el

which is the same as that used in the resistor ex-
ample. - •

• The expression (A-14) appears reasonable, m,
is the best estimate of x given no data. Mm, is the
reading we would get if x were indeed m,. Hence,
y — Mm, represents a sort of error signal, b weights
that error signal to account for the relative pre-
cision of the measurement data.

One can now sec how the term "maximum like-
lihood" arises. p(x|y) is the probability density
of x, given some data y: it might be termed a "like-
lihood function." Under the definition of opti-
mality given above, the optimum estimate of x, for
any type of statistics or x and y, gaussian or not,
is E [x|y]. But, when gaussian statistics arc assumed,
p(xfy) takes on the familiar bcll-shapec form, and
E[xjy], is at the peak value, or point of maximum
likelihood of that curve. For other types of sta-
tistics, this may or may not be the case. (A semantics
problem arises in ihi use of the terms "least squares"
and "maximum likelihood." These terms may not
have the same meaning to all people. They were

(A-15)

This again is the expression used in the example.

One last remark concludes this abbreviated de-
velopment of the Kalman filter equations. We have
just seen the derivation of the equations for process-
ing a single data point and making an optimum
estimate. This optimum estimate is the expected
or mean %-alue of x, given rhe data y. If another
data point is obtained, then x is the new expected
value of x and will play the role of m in the new
estimate. The variance of "he estimate, given by
(A-15), will play the role of or- in the new estimate.

«*,+ T (y-Mx,)

Finally, if the system has dynamics, then the esti-
mated state of the system wall not "stay put" be-
tween estimates. The old estimate and covariance
can be extrapolated to account for system dynamics,
using the transition matrix described in the second
example, or some equivalent process. Thus, having
gone through both examples and the derivation of
the basic equations for the maximum likelihood
estimate, the reader should find the extension of
these equations to their recursive form for dynamic
systems fa i r ly oh\.ious.


